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Global awareness of the need for a more inclusive and climate-positive 
world is at an all-time high. This includes reducing carbon emissions 
and preventing environmental damage and biodiversity loss. 

Bridging the Gap Between Climate Pledges and Action.

Despite growing climate pledges and sustainability initiatives, 
global progress is lagging. 

To bridge this gap, we need a multi-pronged approach:

• Alignment with UN SDGs: Ensure actions directly   
contribute to the UN Sustainable Development Goals 
(SDGs), providing a clear roadmap for progress.

• Science & Technology: Leverage scientific research and 
technological advancements to drive innovative solutions.

• Shift Foresight: Gain a deeper understanding of evolving 
energy landscapes, industries, and social, environmental, 
technological, and geopolitical trends.

• Policy & Finance: Strengthen legislative and financial 
mechanisms that incentivize and empower climate action.

• Public - Private Collaboration: Clearly define the roles 
and responsibilities of the public and private sectors in 
achieving these goals.

The Schneider Electric™ Sustainability Research Institute 
addresses these challenges by providing:

• Global & Local Scenarios Examining climate issues and 
opportunities at both global and local levels, informing 
solutions for businesses, societies, and governments.

• Forecasting & Actionable Insights: Analyzing current and 
future trends across energy, business, and behavior to 
anticipate challenges and identify actionable solutions.

Founded in 2020, our team is part of Schneider Electric, a 
leader in energy management and automation. We collaborate 
with experts across institutions and academia, and our 
research findings are published online.

The present research investigates the potential of Artificial 
Intelligence (AI) to address climate change and facilitate a 
successful transition towards sustainable energy systems. 

We discuss the challenges hindering progress: The lack of 
quantifiable data on AI’s real-world impact on emissions   
reduction limits the assessment of its effectiveness, the fuzzy 
use of terminology surrounding AI subfields creates ambiguity, 
and, the discussions often prioritize consumer-facing AI, 
neglecting its crucial role in decarbonization and the energy 
transition.

Introducing the ’AI for Impact Compass’: a unique, data-driven 
tool designed to improve how we assess AI’s contribution to 
climate action. The Compass offers a unique approach by 
integrating three critical dimensions not typically combined: 
1. Quantified Impact: Measuring the tangible effects of AI 
solutions on decarbonization. 
2. Scalability: Evaluating the potential for deploying AI                    
applications, maximizing their impact across different contexts. 
3. Risk: Assessing risks associated with AI deployment, and 
ensuring safe and trustworthy implementation.

Finally, we examine practical use cases to illustrate our   
findings and lay the groundwork for further research. Our aim 
is to provide large-scale, quantified evidences that offer more 
evidence of AI’s impact on climate, and highlight actionable 
insights for policymakers, academics, and industries.

Rémi Paccou
Director of Sustainability Research, 
Schneider Electric™ Sustainability Research Institute. 

Vincent Petit 
SVP Climate and Energy Transition Research,  
Head of the Sustainability Research Institute. 
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Evolving AI and Energy landscape

The use of Artificial Intelligence (AI) applications in the 
energy sector is gaining momentum, driven by an intensive 
search for reliable, high-quality solutions that have shown 
promising research results. This growing interest is fueled by 
decisionmakers in both industry and policy, who are looking for 
ways to boost company profitability, enhance efficiency, and 
support the energy transition.

Digitalization is crucial for implementing reliable, cost-
effective electrification within the modern context of the 
energy transition, shifting from centralized to more distributed 
systems. With the rapid integration of renewable energy into 
the grid — global annual renewable capacity additions surged 
by nearly 50% in 2023, reaching 510 gigawatts (GW), marking 
the fastest growth rate in the past two decades (1)  — AI 
emerges as a pivotal digitalization tool. 

AI will play a key role in redesigning future energy systems and 
supply chains, enabling accurate forecasting and planning of 
variable renewable energy sources, optimizing grid operations, 
managing demand, and providing automated intelligent fault 
detection. Recent AI advancements impact all levels of 
energy systems, from retail and distribution to transmission 
grid planning, operation, and generation.

Emerging AI regulation

The rapid evolution of AI applications in the energy sector 
promises significant benefits. However, addressing potential 
misuse risks through effective knowledge transfer between 
research, industry, and policy stakeholders presents a 
formidable challenge. 

The European Council recently approved the AI Act, 
establishing the first global regulation for Artificial Intelligence. 
This legislation uses a ‘risk-based’ approach, imposing stricter 
rules on higher-risk AI applications. It aims to promote safe 
and trustworthy AI systems across the EU while protecting 
fundamental rights.
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High-risk AI systems will face stringent requirements, and 
certain practices, like cognitive behavioral manipulation and 
predictive policing, are banned. 

The law also promotes transparency and mandates impact 
assessments for high-risk AI systems in public services. It 
supports innovation through AI regulatory sandboxes for real-
world testing.

The new emerging policy landscapes and shifting industry goals 
create the need for clear communication and comparison 
mechanisms for AI applications.

Towards a unified framework to guide AI deployment

In this context, the Schneider Electric™ Sustainability 
Research Institute aims to provide new insights and tools with 
this research, to address the obstacles impeding progress 
towards safe, transparent and effective AI implementation in 
the energy sector.

To tackle these challenges, the concept of the AI for Impact 
Compass is introduced. Expanding on the previous three-
dimensional indicator proposed in 2022 (2), this framework 
adopts a data-centric approach to assess AI’s contribution 
to climate action and the energy transition, focusing on three 
major criterias : 1) Impact, 2) Scalability, 3) Risk.

This study bridges the gap between researchers, industries 
and policymakers by providing a framework to maximise AI’s 
transformative potential for the energy transition through 
actionable insights. 

From demystifying the fuzzy definitions of AI and digitalization, 
to applying the new AI Compass to case studies in energy 
systems and buildings, this work provides a clear pathway 
towards Impact-Driven AI for the energy transition.

I wish you an excellent reading.

Hugo Quest, PhD, EPFL
Researcher & Data Scientist

(1) IEA, ‘Renewables 2023 - Analysis and Forecast to 2028’.

(2) Quest et al., ‘A 3D Indicator for Guiding AI Applications in the Energy Sector’.
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Executive summary 

The looming climate crisis requires mitigation strategies

The scientific consensus on anthropogenic climate change 
is irrefutable. The Intergovernmental Panel on Climate 
Change (IPCC) paints a dire picture, with current trajectories 
exceeding the Paris Agreement’s target of limiting warming 
to below 2°C. This scenario could have catastrophic 
consequences, including rising sea levels, extreme weather 
events, and mass ecosystem disruptions. To limit global 
warming to 1.5°C, a drastic reduction in greenhouse gas 
emissions is crucial. This requires emissions to peak before 
2025 and decrease by 43% by 2030. This requires a global 
paradigm shift towards sustainable practices across all 
sectors.

Using AI as a transformative power

Given the urgency of addressing climate change, Artificial 
Intelligence (AI) is a potential transformative power for 
accelerating mitigation efforts. AI encompasses a range of 
sophisticated computational techniques, including machine 
learning, reasoning, computer vision, communication and 
more. These techniques excel at analyzing vast and complex 
datasets, extracting hidden patterns, making data-driven 
predictions, and enabling design and operations optimized 
decisions.

This analytical power positions AI to play a potentially pivotal 
role in mitigating climate change when combined with the 
right decarbonization technologies, such as electricity.

AI with Purpose, AI for Impact

However, a crucial gap exists in the current debates 
surrounding AI and climate change: the lack of robust, 
quantifiable evidence regarding its impact on climate 
change mitigation. 

This deficiency stems from two main factors. 

• First, AI terminology lacks of standardization.  Sub-
domains of AI such as machine learning and deep 
learning are often used interchangeably, hindering 
clear communication and impeding rigorous impact 
assessments. 

• Second, discussions often prioritize consumer 
applications of AI, neglecting critical debates 
surrounding its efficacy in the energy transition, 
particularly large-scale decarbonization efforts.  

 
Thus, a refined categorization of AI, along with an exploration 
of its innovative applications and impacts on energy demand 
management, is essential for harnessing AI’s full potential in 
climate change mitigation. Such a categorization will achieve 
its maximal utility only if it informs or aligns seamlessly with 
international standards.

The power of AI for the energy transition

The transformative power of AI for the energy transition lies in 
its novelty and ability to leverage mature and demonstrated 
decarbonization technologies, such as electrification of the 
end-sectors. Decades of AI development have laid a strong 
foundation, and focusing solely on pushing entirely new 
concepts may prove counterproductive. When addressing 
climate change effectively, AI’s true potential also resides in its 
capacity to optimize and improve the performance of existing 
applications.

The AI for Impact Compass as a guiding tool

Despite the energy sector’s enthusiasm for AI, there remains 
a persistent search for methods enabling the proper 
identification and evaluation of dependable, impactful solutions 
that demonstrably address climate change while offering 
widespread deployability with minimal regulatory risk. To bridge 
this gap, we propose a fact-based, categorized approach to 
guide effective decisions towards AI and Energy.

The AI for Impact Compass offers a classification scheme for 
industry leaders, researchers, and policymakers. 

This tool aims to establish a common baseline for effectively 
evaluating AI applications in the energy sector, through three 
main criteria:

1. Quantified Impact: This criterion aims to integrate a 
science-based quantification method to determine the 
AI solution potential. For this, we rely on the “Net Digital 
Impact” framework (a), which provides a framework for 
grounding impact calculations by considering the direct, 
indirect, and systemic effects of digitalization. 

2. Scability Potential: This criterion assesses the potential 
of AI applications to be implemented widely and across 
multiple contexts. To achieve this, we utilize a referenced 
Machine Learning maturity index and incorporate 
standardized adoption criteria to quantify replicability.

3. Risk: This criterion aims to inherently incorporate the 
importance of understanding and managing the risks 
associated with AI usage, encompassing aspects such as 
market, ethics, and governance. We leverage the cutting-
edge guidelines established by the European AI Act to 
assess these risks effectively.

The path forward: Practice on large scale use cases
 
While the AI for Impact Compass aims to guide and 
facilitate evidence-based discussions on AI for climate 
change mitigation, it represents an initial step in a broader 
quantification process. Our Research Institute is committed to 
conduct and to provide further research to precisely quantify 
the impact of these meta-case studies and provide robust 
evidence supporting AI’s role in mitigating climate change.

www.se.com Life Is On | Schneider Electric 5 

(a) The full framework is defined in the ‘Digital with Impact’ Concept Paper, May 2024, Schneider ElectricTM Sustainability Research Institute 



1 Why guiding AI 
for Impact? 

Problem Statement
 
Decarbonizing energy systems, as mandated by global climate 
policies, necessitates optimizing energy usage and integrating 
cutting-edge digital technologies with proven climate change 
mitigation benefits.

While the proliferation of Artificial Intelligence (AI) 
applications presents promising potential in facilitating the 
transition towards a modern energy infrastructure, there is a 
conspicuous absence of a unified and rigorous reference 
point through which stakeholders can evaluate their real 
impact on climate change mitigation.

Research Problem

The central challenge involves creating a decision-making tool 
that balances practicality with robust scientific methodology 
Furthermore, integrating novel factors is essential to ensure 
the framework’s applicability and efficacy in addressing urgent 
climate change mitigation challenges. Hence, our research 
takes the following factors into account:

I. Comprehensive Impact Quantification: Establishing 
a rigorous method for evaluating the climate impact of 
AI applications, based on a calculation methodology that 
encompasses direct, indirect, and systemic effects.

II. Scalability at the Core: Incorporating scalability as an 
essential factor, given the urgent requirement for efficient and 
effective solutions capable of being extensively implemented 
across diverse contexts to combat climate change.

III. Risk Assessment: Evaluating the risk associated with 
AI solutions to prevent enabling social scoring, the use of 
manipulative techniques, or jeopardizing the safety of critical 
infrastructures.

IV. Demand-side Focus: Emphasizing demand-side climate 
change mitigation and decarbonization opportunity, as an 
essential amount of global greenhouse gas (GHG) emissions 
can be attributed to energy usage

V. Separating the Grain from the Chaff: Developing a 
methodology to differentiate promising AI applications from 
those that are less so, without imposing a singular truth, to 
offer preliminary guidance to stakeholders in distinguishing 
between potential solutions.
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Research Objectives

This study aims to address the aforementioned gap by offering 
a systematic approach to supporting policymakers and 
decision-makers in directing AI-driven impact initiatives within 
the energy transition.

The research encompasses two primary goals:

1. Suggest an initial set of fundamental AI-Energy use cases 
that warrant further examination in quantifying of their impact.

2. Present the AI for Impact Compass, which aims to deliver 
a reliable quantification technique and a visual aid to support 
decision-making processes for policymakers, investors, 
businesses, and public research institutions.
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2 Why AI and Energy 
is the new power 
couple



Chapter II. Why AI and Energy is the new power couple 

Energy Transition: 
What is the trigger for a new season of AI?
The looming shadow and a glimmer of hope

Climate change casts a long shadow, demanding immediate 
action. A sustainable energy future is no longer a luxury, it is 
the only viable path. 
 
Much like electricity sparked the Second Industrial Revolution 
and Information and Communication Technology (ICT) 
propelled the Third, Artificial Intelligence (AI) is poised to 
become a driving force behind the next transformative 
industrial era.
 
As AI technology advances to deliver widespread impact and 
energy transition rises on government agendas worldwide, the 
convergence of AI and energy presents a critical opportunity 
and challenge for governments and societies.

Can AI become the key to unlocking a truly sustainable 
Fourth Industrial Revolution, one that tackles the 
environmental challenges head-on? 

AI-Powered Energy transition

The potential synergy between AI and energy demands our 
immediate attention. We need to pinpoint the areas within the 
energy transition where AI’s impact will be most significant. 

Which AI domains – reasoning, planning, learning, and 
especially machine learning –  will offer the most valuable tools 
to mitigate climate change through energy transition?
 
Developing quantification methods to assess the AI-Energy 
coupling’s success is a vital step toward harnessing its 
potential and guiding the energy sector toward a sustainable 
future.
 
In this chapter, we will explore the past of AI and energy 
and see how they have developed a symbiotic relationship, 
meaning they benefit and depend on each other.
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Photography : Dartmouth College for the Dartmouth Summer Research Project on Artificial Intelligence August 1956. From left to right: Oliver Selfridge, Nathaniel Roch-
ester, Ray Solomonoff, Marvin Minsky, Trenchard More, John McCarthy, Claude Shannon.
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The birth of AI: A spark at Dartmouth (1956)

The first cycle of AI

AI Spring

In June 1955, John McCarthy, a young Assistant Professor 
of Mathematics, and Claude Shannon, the father of 
information theory then at Bell Labs, organized a 2-month, 
10-man workshop on Artificial Intelligence (DSRPAI) during 
the summer of 1956 at Dartmouth College (1). This event 
fueled significant funding and research efforts towards what 
researchers called the “AI Spring”, which marked the initial 
surge of enthusiasm and prepared the ground for the “AI 
Summer”. 

The workshop’s inspiration stemmed from Alan Turing’s 
groundbreaking paper “Computing Machinery and 
Intelligence” (2), which introduced the Turing test as a 
measure of machine intelligence. Inspired by this concept, the 
enthusiasm for AI research flourished in the following decade. 
It paved the way for significant advancements, including 
ELIZA (3), a Natural Language Processing (NLP) program 
developed by Joseph Weizenbaum at MIT (1964 - 1967), 
considered an early ancestor of today’s Large Language 
Models (LLMs) like ChatGPT, Mistral, Gemini and many more.

Post 90s : the beginning of a new spring?

Ironically, in the absence of government funding and public 
hype, AI thrived. During the 1990s and 2000s, many of the 
landmark goals of Artificial Intelligence had been achieved.

Increased computing power enabling more complex 
algorithms, advancements in mathematical techniques like 
probability and statistics, prepared the ground for effective 
Machine Learning (ML) – showing early signs in Game 
Playing (6) : Deep Blue’s victory in chess showcased AI’s 
potential in strategic thinking; Natural Language Processing 
(NLP): Speech recognition software like ‘Dragon Dictate’ 
marked progress in understanding human language; and 
Robotics: Robots with basic capabilities like ‘Kismet’ emerged 
(7).

The past decade (2015 onwards) has witnessed an 
exponential leap in AI capabilities. No longer confined to 
specific tasks, AI has blossomed into a versatile technology, 
transforming countless industries. This advancement is 
powered by a progressively interconnected relationship with 
energy, particularly electricity, which has evolved from a basic 
link into a mutually dependent system.

AI blossoms in the 90s (and beyond)

AI Winter (1970s-80s)

While the initial enthusiasm for AI flourished in the 1950s and 
60s, the technology’s limitations and unrealistic expectations 
about its capabilities led to a period of reduced funding, 
interest, and progress known as the “AI Winter” (1970s - 80s). 

Interestingly, even during the AI Winter, two foundational 
technologies paved the way for AI’s future:

• First, Electricity, was a catalyst for the Second Industrial 
Revolution, which provided the energy foundation for 
significant advancements in computing power for AI 
research and development (4).

• Second, Information and Communication Technologies 
(ICT), a vital driver of the 3rd Industrial Revolution, 
underwent significant advancements in miniaturization - 
exemplified by the invention of the Integrated Circuit (IC) 
in the 1950s - enabled the creation of smaller, cheaper 
transistors, leading to a dramatic increase in processing 
power, and interconnectedness with advancements in 
communication technologies like fiber optics, satellite 
communication, and early stages of the internet (5), both 
crucial to AI’s progress.

The emergence of a symbiotic AI-Energy relationship
 
As climate change becomes increasingly visible, the 
energy transition has shifted from a ‘niche’ concern to a 
universal human endeavor. Simultaneously, AI has entered 
a renaissance, leveraging modern technology to increase 
its computing power and unlock large-scale applications 
exponentially. Recent developments show that both energy 
transition and AI encompass not only energy itself, but also 
access to energy, social justice, and sustainable economic 
development. A symbiotic relationship between AI and 
energy emerged in this context.

• On one hand (the direct effects), AI’s infrastructure 
requires substantial energy : Reliable and efficient 
energy becomes even more critical for AI’s operation and 
development, posing a challenge regarding resource 
consumption and potential environmental impact. 

• On the other hand, AI offers the potential (potentially 
through positive indirect and systemic effects) for a more 
impactful transition to modern energy systems.

A recent IEA perspective (8) highlights the increasing 
complexity of the electrical system, driven by rising demand, 
decarbonization, and the proliferation of distributed energy 
resources, which necessitates advanced grid management 
tools. 

Concurrently, the rapid advancement of AI presents a 
viable solution through its capacity to analyze vast datasets 
generated by smart grids and connected devices. In many 
cases, AI is gaining traction in the industry, with diverse 
applications and significant market potential; however the 
question of the impact at scale still needs to be better 
documented. 
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What sparked the Industrial Revolution?

Recognizing the signs

Projections suggest that electricity will dominate energy 
consumption by 2050 (IEA NZE Net Zero scenario - World 
Energy Outlook (WEO)). We believe this dominance 
necessitates a crucial next step: understanding how these 
new, digitalized, and electricity-driven energy systems can 
serve as the foundation for a fourth Industrial Revolution. 
Unlike its predecessors, this revolution must inherently 
address the limitations of our planet (Earth Boundaries) and 
pressing issues like climate change, biodiversity loss, and 
resource depletion.

Thinking Industrial Revolutions

Drawing on the work of Professor of Economic History  
Nicholas Crafts (9), we can define an industrial revolution as a 
confluence of two factors:

• A General-Purpose Technology (GPT): A technology with 
far-reaching applications across many sectors, such as 
steam, electricity, and information and communication 
technologies (ICT).

• The Invention of a Method of Invention (IMI): A process 
that accelerates the creation of new knowledge and 
technologies. 

IMIs drive productivity gains in knowledge production, while 
GPTs boost productivity in goods and services.

The First, Second, and Third Industrial Revolutions each 
brought advancements in specific areas of innovation. 
Reflecting on these historical experiences can provide 
insight into the potential impact of AI as a General-Purpose 
Technology and its role in driving a Fourth Industrial 
Revolution. 

To achieve this, AI needs to be not just a GPT but also the 
Invention of a Method of Invention (IMI), as some writers 
think it may be (Cockburn et al., 2019) (10). IMIs and GPTs are 
generally distinct, but their synergies can lead to significant 
advancements. Figure 1 illustrates this.

The genesis of AI-Energy nexus

Second Industrial Revolution (1870-1914)
 
The Second Industrial Revolution is the emergence of 
Electricity as a Method of Invention, grounded in applied 
science and the innovation of the industrial research and 
development (R&D) laboratory. This stands in stark contrast 
to the First Industrial Revolution, which lacked a robust 
scientific foundation. The establishment of Thomas Edison’s 
first laboratory in Menlo Park in 1876 marked a turning point, 
as the rise of electricity as a General-Purpose Technology 
(GPT) and the Invention of a Method of Invention (IMI) 
became a defining feature of the technological advancements 
brought about by the Second Industrial Revolution (12).

Third Industrial Revolution (1960s-2020s)

The Third Industrial Revolution is a term often used to refer 
to the 1960s to the 2000s, when computer science came of 
age. It encompassed rapid computer hardware and software 
development from the mainframe, through the PC, to the 
Internet (Schwab, 2017) (13). A key characteristic of ICT is that 
it is - like Electricity - both a knowledge technology (IMI) and 
a GPT (Mokyr, 2002) (4). As an IMI, ICT not only significantly 
reduced the access costs of knowledge, but also provided 
a new technology for innovation reflected in a significant 
increase in the share of patent citations, together with 
significantly more patents per R&D dollar (Branstetter et al., 
2019) (14). 

What might make the AI-Energy couple unique?

According to Crafts, the historical context of past Industrial 
Revolutions offers insights into the potential role of AI in the 
4th Industrial Revolution. Hence, AI might present a unique 
possibility – being both a GPT and an IMI. However, unlike past 
revolutions, the 4th Industrial Revolution needs to prioritize 
sustainability (15).   

This raises critical questions: Can the forthcoming 
convergence of advancements in AI act as a sustainable GPT 
for this new era? Can this combination simultaneously drive 
innovation, economic growth, and environmental sustainability 
by supporting the shift toward decarbonized energy systems?

Figure 1. GPTs and IMIs. AI-Energy nexus. 

Schneider ElectricTM Sustainability Research, based on Nicholas Crafts.

The second cycle of AI
Towards a 4th Industrial Revolution?

First Industrial Revolution (1760s-1830s)

Classically, the term ‘First Industrial Revolution’ describes 
economic development in Britain between the 1760s and the 
1830s. It is well-known that real wages increased very slowly 
during this acceleration period in technological progress 
(11). According to Crafts, the First Industrial Revolution does 
not provide a model for arguing that a General-Purpose 
Technology necessarily negatively impacts workers living 
standards. However, Crafts also points out that this First 
Industrial Revolution was not coupled with the Invention of a 
Method of Invention (IMI). Its capacity to transform the entire 
economy was limited.
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Digitization, Digitalization and Digital Transformation

Demystifying AI: 
Towards shared definitions

Currently, there lacks a standardized set of definitions for 
digitization, digitalization, and digital transformation within 
the energy sector. Building upon F. Heymann et al.’s work (24) 
as well as other research on defining “Digital” (25) (26) (27), we 
propose the following foundational definitions:

Digitization (related to Direct effects).
Converting analog data to digital format happens relatively 
quickly, often at the individual company level within the energy 
sector. Consider a distribution network company converting its  
network plan to a digital version.

Digitalization (related to Indirect effects).
Utilizing digital technologies (ICT) across all players in the 
energy sector to exploit new data sources. This level aims to 
improve safety, efficiency, and productivity. It involves broader 
structural changes across the sector, taking several years to 
achieve. Imagine all distribution network companies digitizing 
their network plans and assets.

Digital Transformation (related to Systemic effects).
A large-scale, cross-sectoral shift in which all economic and 
social actors connect into an interlinked digital system fosters 
enhanced data exchange, analysis, and decision-making 
capabilities. This shift takes years to decades to achieve and 
fundamentally alters interactions between all market players. 
For example: all network companies in the gas, electricity, and 
heating sectors digitize their network plans and assets, sharing 
data on a central platform, and enabling new business models 
with multiple users.

Secondary Digital Technologies.

Today, these applications have less quantified use cases or 
less widespread agreement on their applications.
• Digital Twins (DT): Enabled by IoT, these are simulated 

models of assets or even entire electricity systems, that 
can be used to optimize operations.

• Robotics (RB): Using robots for design, construction, and 
operational processes in the energy sector.

• 3D Printing (3D): Manufacturing objects based on 3D 
computer models.

• Augmented & Virtual Realities (VR): Enhancing the real 
world for human interaction.

Understanding the Digital toolbox

This section clarifies key concepts related to digitalization and its influence on the energy transition.

Following Heymann et al.’s recommendation, which draws upon 
a consensus across multiple sources (26) (28) (29), and aligns with 
recognized definitions (20), we will utilize the following definitions 
for the digital technologies that form the backbone of most uses 
for the energy transition.

Primary Digital Technologies.

Four technologies might offer the broadest potential for 
contributing to the energy transition.
• Artificial Intelligence (AI): Methods that mimic human 

intelligence for learning, problem-solving, and decision-
making.

• Big Data (BD): Reflecting the real world through massive 
amounts of machine-readable, often real-time data.

• Internet of Things (IoT/IIoT): Fusing digital and physical 
infrastructure through internet-connected devices.

• Distributed Ledger (DL): A secure, transparent way to 
store transactions chronologically.

Understanding the AI toolbox

While there is not a single, universally accepted taxonomy for 
AI at this point, the European Commission, through its Joint 
Research Centre (JRC), is actively involved in developing 
a comprehensive framework for classifying AI technologies 
(31). This framework aims to establish a common language for 
discussing AI across various sectors and applications.

The JRC is collaborating with international partners, 
particularly the United States, to establish a shared 
understanding of AI terminology and taxonomies. They 
propose the following classification of AI domains:

1. Reasoning (RE)
2. Planning (PL)
3. Learning (LE)
4. Communication (CO)
5. Perception (PE)
6. Integration & Interaction (II)

Note: For detailed definitions of the six domains, please refer to 
the Annex.

A well-defined terminology could foster a more unified 
approach to AI by establishing a common language for 
researchers, developers, policymakers, and stakeholders 
across sectors. 

This classification could enable standardized evaluation of AI 
capabilities, allowing for a clearer understanding of risks and 
benefits. Furthermore, the terminology can inform discussions 
on the ethical implications of AI development and deployment, 
ensuring responsible use of these technologies.
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Contextualizing AI: 
A pivotal point in the AI-Energy history

Heymann et al. (21)  have identified five current scientific 
breakthroughs which are driving a surge in AI applications 
across various industries, including the power sector.

• Powerful, affordable hardware: The availability of 
Graphics Processing Units (GPUs) has significantly 
reduced the training time for complex AI models, as 
demonstrated in Figure 2 (32, 33).

• Deep learning breakthroughs: Significant progress 
in computer vision, reinforcement learning, and 
understanding goal-oriented behavior has unlocked new 
possibilities for AI applications (34).

• Neuroscience-inspired AI: Insights gleaned from the 
study of the brain have informed AI research in areas 
such as memory, attention, and continuous learning (35).

• Transfer learning: Leveraging knowledge from pre-trained 
models and applying it to new tasks has reduced the need 
for extensive data collection (34).

• Automated machine learning (AutoML): Automating the 
selection of AI models and their hyperparameter tuning 
has streamlined the development process, making it more 
accessible (36).

 
As a result, the expanding capabilities of AI are driving its 
increasing adoption by businesses across various sectors, 
including power (38) (39). 

AI is moving from theory to real-world applications

Figure 2 - Evolution of computing power, cost and data storage. 
The figures shows the number of transistors per CPU and 
technology node size (a), memory costs per gigabyte (b).

Source: Heymann et al.

Research on AI’s role in the power sector is not new, but interest in it is exploding

In the same study (21), Heymann et al. provide a comprehensive analysis of research on AI applications within the power sector, 
spanning 40 years. The findings challenge the perception of AI’s involvement in energy as a novel development.

• The research reveals a well-established foundation, with the publication of the first major review on “expert systems” (an 
early form of AI) in the energy domain dating back to 1989 (40). Similarly, by 1997, a significant body of research on diverse 
AI systems tailored for the power sector had already emerged (41).  These findings demonstrate that rudimentary forms of AI, 
such as expert systems and neural networks, have contributed consistently to the power sector for over three decades.

• Heymann further quantifies the field’s growth, estimating an annual publication rate exceeding 25,000 at the intersection 
of power systems and AI (as of 2022). Despite this substantial volume of research, the study’s authors posit that our 
understanding of AI utilization within the electricity industry, along with its future potential, remains incomplete.

Figure 3 - 40 years of AI in the energy sector. . Source: Quest et al.
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Understanding AI: 
As a Transformative Power

As discussed earlier, referencing Crafts’ work, AI, as a 
“General Purpose Technology” and an “Invention of a 
Method of Invention”, could potentially trigger the 4th 
Industrial Revolution. However, the sheer scale and scope 
of AI applications are so vast that, it’s crucial to pair AI with 
technologies that can deliver immediate and scalable action, 
in the context of an impactful energy transition. While other 
digital technologies lay the groundwork for optimization and 
efficiency gains, AI appears to stand at the apex of the digital 
transformation, serving as the ubiquitous driving force behind 
it. 

Figure 4. Direct, Indirect and Systemic effects of AI. 
Source: Kaack et al.

A revolution for better or worse?

AI is rapidly transforming the global economy, with companies 
investing significant capital in these technologies. AI is being 
leveraged across various sectors to enhance operational 
efficiency, manage complexity, deliver personalized services, 
and accelerate innovation. However, as AI’s societal influence 
grows, concerns arise regarding its environmental impact (37), 
particularly its effect on greenhouse gas emissions. Hence, a 
systemic approach is needed. 
 
Indeed, the answer hinges on how AI models are developed, 
and operated, and the societal shifts they induce. At the 
time of this study (June 2024), our understanding of AI’s full 
environmental impact remains a developing area of research, 
which raises concerns due to the significant potential 
implications involved. 
 
While important, the focus on AI’s direct environmental 
impacts, such as energy use and emissions, has perhaps 
overshadowed a broader consideration of its wider ecological 
consequences. The pervasive nature of AI applications 
extends to diverse sectors like healthcare, education, mining, 
transportation, agriculture, and many more. These widespread 
applications can generate indirect effects on emissions, 
potentially outweighing the direct impacts, with both positive 
and negative outcomes possible. 
 
To ensure the responsible and sustainable integration of 
AI technologies, it is imperative to conduct comprehensive 
assessments encompassing both direct and indirect 
environmental impacts, as defined in Figure 4 (42). Such 
evaluations will provide crucial insights for mitigating potential 
risks and maximizing the AI’s positive contributions in 
addressing the global climate crisis.

AI’s growing adoption in various sectors raises concerns about 
its environmental impact. 

• While its direct impact on emissions is currently small, its 
rapid expansion and increasing computational demands 
could significantly increase energy consumption. 
However, advancements in energy efficiency and the use 
of renewable energy sources could help mitigate these 
effects. 

• The indirect impacts of AI on emissions are less clear. 
While AI has the potential to accelerate the development 
of climate solutions, such as more efficient batteries 
and renewable energy integration, it could also have 
negative consequences, including increased electricity 
use in various sectors and potentially boosting fossil fuel 
production (through the Jevons Paradox). 

Furthermore, widespread AI adoption could indirectly impact 
emissions through its societal and economic effects, such as 
changes in poverty, food security, and social inequalities.

AI: Climate savior or culprit?AI permeates the three layers of digital transformations



3 AI-Energy use cases 
for Climate
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Categorizing AI applications

The urgent need to reduce carbon emissions across all 
industries is driving a significant shift in how we produce and 
use energy. 

This transition requires moving beyond individual industry 
goals and instead focusing on a more comprehensive 
approach that optimizes energy flow across the entire 
system.

In this chapter, we examine current and comprehensive 
inventories of AI use cases in the energy sector, evaluating 
their strengths and limitations. 

We propose a first categorization of use cases to evaluate 
the impacts of an AI solution on an energy transition 
application. 

(2) Compared to the United States here. Europe has much lower energy per capita demand, yet the difference remains significant, at around five to six times. 
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2018: The EPRI’s Playbooks

Pioneering inventories

The Electric Power Research Institute (EPRI), a leading 
American non-profit organization focused on research and 
development in the energy sector, identified key challenges 
and use cases for the future of AI-electricity systems in two 
publications. In 2018, EPRI released “Developing a Framework 
for Integrated Energy Network Planning (IEN-P)” (68) outlining 
a strategic framework for long-term investment planning in 
the electricity sector. This was followed in 2019 by a study 
identifying specific use cases related to these challenges (69).

Key Outcomes

EPRI’s analysis reveals a list of AI-electricity synergies, 
categorized into three distinct areas:

1. AI for modeling the changing power system 
Which focuses on adapting planning models to account for: 
 
   1.1. Operational details: New renewable resources, such as 
wind and solar energy, impact reliability services traditionally 
provided by fossil fuels. Planning needs to consider how these 
new resources can meet reliability needs. 
   1.2. Increased granularity: Like Planning models which 
require finer geographic and time-based detail to address new 
challenges. 
   1.3. Integrated planning: Closer collaboration across 
generation, transmission, and distribution planning is crucial 
for optimal system development. 
 
2. AI for integrating forecasts
Key areas for improvement include: 

   2.1. Electric load, renewables, and distributed energy: 
More granular forecasting of electricity demand, Variable 
Renewable Energy (VRE) production, distributed energy 
resource (DER) adoption, and weather patterns. 
   2.2. Customer behavior: A deeper understanding of 
customer behavior, the impact of incentives on behavior, and 
how customer actions affect energy supply, storage, and 
demand. 
 
3. AI for expanding planning boundaries
Considering a broader scope including:

   3.1. New objectives and constraints: Planning must 
optimize for objectives beyond traditional cost-effectiveness, 
such as resilience, flexibility, and environmental/social goals. 
   3.2. Wholesale power markets: Understanding how evolving 
wholesale markets impact resource viability and reliability 
services. 
   3.3. Stakeholder engagement: Increased public 
participation requires extensive stakeholder engagement 
throughout the planning process.

Building the Blueprint 
Emerging AI playbooks for the energy transition

Innovation landscape for a renewable-powered future

The International Renewable Energy Agency (IRENA) 
rigorously assessed sixpotential use cases of AI in the power 
sector with a special emphasis on the integration of variable 
renewable energy technologies (69), which are:

1. Improving solar and wind power forecasting for better 
resource integration.
2. Enhancing grid stability and reliability through predictive 
maintenance and real-time optimization.
3 Refining demand forecasting to better match supply with 
consumption.
4. Enabling efficient demand-side management through 
personalized energy recommendations and automated 
controls.
5. Optimizing energy storage operations for maximum 
efficiency and cost reduction.
6. Facilitating optimized market design and operation for 
increased transparency and competitiveness.

Additionally, IRENA identifies four crucial enabling factors for 
the successful implementation of AI in the energy sector. 

Feeding the AI for Impact Compass

The AI for Impact Compass (discussed in the following 
chapter) has integrated these factors as follows:
 
1. Technological maturity: Addressed through the combined 
assessment of AITRL (AI Technology Readiness Level) and 
AIARL (AI Adoption Readiness Level), determining the overall 
maturity of AI solutions. 
 
2. Data availability and quality: This is directly linked to 
the robustness of the “Net Digital Impact” quantification 
framework, ensuring accurate assessment of AI’s impact. 
 
3. Cybersecurity: This is considered within the broader EU AI 
Act risk assessment levels (1 to 4), ensuring appropriate risk 
mitigation measures are in place. 
 
4. Training and re-skilling: This factor is integrated into the 
AIARL assessment, ensuring adequate workforce preparation 
for AI adoption in the energy sector. 
 
By incorporating IRENA’s recommendations, the AI for Impact 
Compass aims to address key barriers to achieving large-
scale impact with AI for the energy transition, while achieving 
responsible and ethical AI deployment.

2019: The IRENA’s Brief
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Recent AI playbooks for the energy transition
2020: The DENA’s Report The resulting white paper locates the applications in 4 areas:

1. Renewable power generation and demand forecasting
2. Grid operation and optimization
3. Management of energy demand and distributed resources
4. Materials discovery and innovation

The WEF identifies 15 key applications within four areas that 
warrant further investigation, highlighting that the potential 
of AI in power grid operation and optimization will require 
substantial asset upgrades and replacements. Hence, 
the environmental impact of these evolutions needs to be 
considered when evaluating the corresponding AI applications. 

In conclusion, none of the aforementioned recent studies 
distinguish between AI domains nor utilize a comprehensive, 
rigorous system of energy transition use cases.

List of AI-Energy Applications identified - DENA

The DENA (Deutsche Energie-Agentur) recent, more detailed 
study (70) clusters nine broad application domains of AI in 
power systems into three fields, namely (1) maintenance and 
security, (2) general foundations of decision making and (3) 
distribution and customer services. See Figure 5 below.

Key Outcomes

The applications are further characterized by AI capabilities 
(audio and speech, image and face recognition, robotics, 
assistance systems and general data). The nine applications 
are then ranked according to their contribution to the energy 
transition and their maturity (closeness to commercial 
markets). The analysis by the authors reveals most developed 
and beneficial AI use cases for the energy transition are 
those that are specifically related to general foundations 
of decision-making (predictions, operations optimization, 
inventory optimization, predictive maintenance and strategic 
business decisions). DENA’s pioneering classification of AI 
applications in the energy sector (see figure 5 below), based 
on their (1) contribution to energy transition and (2) maturity 
level, is a commendable step. However, the absence of 
quantitative measures limits its potential as an industry-wide 
benchmark.
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Figure 5. Relative classification of fields of application of AI in the energy industry.

Source : DENA.

2021: The WEF / BNEF / DENA White Paper

In a collaborative effort to accelerate the adoption of AI in the 
energy sector, the World Economic Forum’s Global Future 
Council on Energy Transition, BloombergNEF, and the DENA 
convened a series of roundtable discussions from March to 
May 2021 (71). These discussions brought together leading 
experts from both the energy and AI fields.

2022: climatechange.ai Report

climatechange.ai, a collaborative research platform, enables 
researchers to underscore the importance of machine 
learning (ML) in combating climate change. Their 2022 report 
(72) categorizes ML applications using three key criteria:
• High Leverage: This indicator indicates crucial areas 

identified by experts where ML tools can significantly 
contribute to climate change mitigation or adaptation 
efforts.

• Long Term: Denotes applications whose primary impact 
is expected after 2040, potentially less urgent than near-
term solutions.

• Uncertain Impact: This refers to applications whose 
effect on greenhouse gas emissions is uncertain or may 
have potential negative side effects. 

However, while striving for comprehensiveness, the 
climatechange.ai classifications do not offer an objective 
quantitative ranking of the use cases.
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Our blueprint for the future
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Compiling 40 use cases for examination

In this paper, we concentrate on climate change mitigation 
strategies, not adaptation measures. 

The following list aims to provide a first inventory of potential 
large-scale impact areas. 

The categorization goal is not to establish precise scores, but 
rather to highlight areas with significant potential for large-
scale GHG emissions reduction. 

This will guide prioritization for in-depth, robust bottom-up 
assessments using recent quantification methodologies.
 
Based on research from EPRI, IRENA, DENA, WEF, and 
notably climatechange.ai, we have compiled a selection of 40 
use cases spanning various energy transition domains. 

The 40 use cases presented herein represent a consolidation 
of the selections made by each contributing organization. 
Variations in the phrasing of these use cases suggest that 
more detailed descriptions will be required in subsequent 
research endeavors. 

Given that the primary objective of this paper is to propose 
a methodological framework rather than to conduct an 
exhaustive quantification, it is important to acknowledge that 
the list presented here is not intended to be comprehensive, 
as AI applications continue to evolve. Instead, it reflects the 
most widely recognized common ground among leading 
organizations.

The subsequent primary end-use applications are considered:

• Buildings & Cities
• Carbon dioxide removal
• Data Centers and ICT
• Farms and Forests
• Industries
• New Electricity Systems (Modern Grids)
• New Mobilities
• Transportation and Infrastructure

Despite these 40 use cases constituting a curated selection 
of some of the most auspicious alternatives, the subsequent 
chapter (Chapter IV) will propose an analytical instrument, the 
“AI for Impact Compass.” 

This framework is designed to enable a more granular ranking 
of use cases through the examination of Impact, Scalability, 
and Risk, thereby assisting decision-makers and policymakers 
in prioritizing the most consequential AI applications.

Table 1. 40 AI-Energy use cases for Climate Change Mitigation.

Schneider ElectricTM Sustainability Research, 

Based on EPRI, IRENA, DENA and climatechange.ai 

1 Buildings & Cities - AI for approaching low-data settings

2 Buildings & Cities - AI for data for smart cities

3 Buildings & Cities - AI for flexibility and microgrids

4 Buildings & Cities - AI for gathering infrastructure data

5 Buildings & Cities - AI for HVAC optimization 

6 Buildings & Cities - AI for low-emissions infrastructure

7 Buildings & Cities - AI for modeling energy use across buildings

8 Buildings & Cities - AI for occupancy detection

9 Buildings & Cities - AI for rooftop solar integration

10 Carbon dioxide removal - AI for direct air capture

11 Carbon dioxide removal - AI for sequestering CO2

12 Data Centers & ICT - AI for energy efficiency and AI-ready DC

13 Data Centers & ICT - AI for flexibility at DC level

14 Farms & Forests - AI for managing forests

15 Farms & Forests - AI for monitoring peatlands

16 Farms & Forests - AI for precision agriculture

17 Farms & Forests - AI for remote sensing of emissions

18 Industries - AI for adaptive control

19 Industries - AI for Climate-friendly chemicals

20 Industries - AI for Climate-friendly construction

21 Industries - AI for operational efficiency through modern maintenance

22 Industries - AI for optimized energy demand

23 Industries - AI for recommender systems

24 Industries - AI for reducing food waste

25 Industries - AI for reducing overproduction

26 New Electricity Systems - AI for accelerating fusion science

27 New Electricity Systems - AI for accelerating materials science

28 New Electricity Systems - AI for forecasting supply and demand

29 New Electricity Systems - AI for improving scheduling and flexible demand

30 New Electricity Systems - AI for managing existing controllable technologies

31 New Electricity Systems - AI for modeling emissions

32 New Electricity Systems - AI for reducing life-cycle fossil fuel emissions

33 New Electricity Systems - AI for reducing system waste

34 New Electricity Systems - AI for using cleaner electricity sources

35 New Mobilities - AI for battery and storage management

36 New Mobilities - AI for electrification of fleets / Electrical Vehicles

37 Transportation and Infrastructures - AI for alternative fuels and electrification 

38 Transportation and Infrastructures - AI for improving vehicle efficiency 

39 Transportation and Infrastructures - AI for modal shift

40 Transportation and Infrastructures - AI for reducing transport activity
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4 AI for Impact Compass



Chapter IV. AI for Impact Compass

Guiding the evaluation of the environmental
interest of AI applications

Leveraging existing frameworks from diverse research entities, 
this Compass proposes an enhanced indicator for classifying 
AI applications for a sustainable energy transition.

Two new elements are integrated:

Impact Quantification: The “Net Digital Impact” approach 
(Schneider ElectricTM Sustainability Research Institute) grounds 
impact calculations by quantifying the direct, indirect, and 
systemic effects of AI applications. 

Scalability: This dimension evaluates the potential of a solution 
to maximize its deployment across contexts.

We will describe this approach further in this chapter.

(2) Compared to the United States here. Europe has much lower energy per capita demand, yet the difference remains significant, at around five to six times. 
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Despite the energy sector’s enthusiasm for AI, industry 
leaders and policymakers are still searching for a method to 
evaluate the environmental interest of dependable, impactful 
AI solutions that can be widely deployed with minimal risk and 
demonstrably address climate change.

We argue for a more fact-based and contextual approach 
to AI discussions. In response to the evolving landscape 
of applications and regulations in the energy sector, the AI 
for Impact Compass proposes a scheme to classify these 
applications.

This tool is intended for industry, researchers, and 
policymakers alike. Its goal is to provide a common baseline for 
visually comparing AI applications based on three factors.

www.se.com Life Is On | Schneider Electric 20



Chapter IV. AI for Impact Compass

www.se.com Life Is On | Schneider Electric 21

Current AI-Energy evaluation tools exhibit limitations

The need for a flexible AI evaluation tool

With the rise of AI applications across industries, classification 
and comparison frameworks have emerged to facilitate 
comparing existing solutions. In this context, we compared 
recent AI frameworks with the Sustainability Research Institute 
AI for Impact Compass to further highlight its relevance. 
Quest et al. (43)  highlight that several existing frameworks offer 
valuable insights, but often lack the necessary flexibility or 
target audience for broad application. The literature below is 
taken from the study ‘A 3D indicator for guiding AI applications 
in the energy sector’ (43) by Quest et al.

• OECD Framework (44): This policymaker focused 
framework offers a comprehensive approach but requires 
detailed analysis across a vast number of dimensions, 
potentially hindering its accessibility for non-experts.

• McKinsey Global Institute Framework (45): This business-
oriented framework prioritizes economic potential, 
particularly focusing on deep learning applications, 
limiting its broader applicability.

• Lee et al. Frameworks (46) (47): These frameworks offer 
innovative methods for assessing energy savings 
potential, but lack clear actionable outputs for broader 
application beyond energy savings. 

• Bahrammirzaee’s work (48) analyzes artificial neural 
networks, expert systems, and hybrid intelligence 
systems in the financial sector using application 
domain, algorithm type, and performance as evaluation 
categories. 

• Similarly, Nsoesie (49) emphasizes performance, input 
data, algorithms, and annotation needs when assessing 
AI applications within the healthcare sector. 

• In the energy sector, Antonopoulos et al. (50) compare AI 
applications specifically for demand response programs, 
focusing on algorithm selection and the targeted 
problems addressed in various studies.

Table 2 summarizes these existing frameworks.

Table 2. Comparative table of the main characteristics of six recent AI frameworks. 

Schneider ElectricTM Sustainability Research Institute. Based on Quest et al.

In 2022, Quest et al. (43) presented a comprehensive 
framework for evaluating AI applications, encompassing the 
key dimensions of risk, maturity, and improvement. Notably, 
their work included a user-friendly graphical representation, 
facilitating identifying promising AI solutions. 

A critical examination of this framework reveals the potential 
for further enrichment through the inclusion of two additional 
dimensions: 

1. Quantified Impact Assessment: 

Current evaluation methods often lack a standardized 
approach to measuring the impact of AI applications 
Incorporating of a quantified impact assessment, based on 
a recognized methodology, would allow for a more objective 
evaluation of the application’s real-world benefits. This could 
involve measuring economic gains, social good achieved, 
or environmental improvements, depending on the specific 
application domain. 

2. Scalability Assessment: 

While Quest et al.’s maturity dimension focuses on the level of 
development completeness, it does not explicitly address the 
application’s ability to be effectively replicate across diverse 
contexts. The inclusion of a scalability analysis would address 
this limitation. 
Scalability encompasses not only technical replicability but 
also adaptability to varying operational environments and 
data sets.  This expanded notion emphasizes the importance 
of repeatability and context-specific functionality.  More 
specifically, we propose the combined use of an Artificial 
Intelligence ‘Technology Readiness Level’, and an ‘Adoption 
Readiness Level’ to further provide solid references for 
quantification.

IInndduussttrryy PPoolliiccyymmaakkeerrss RReesseeaarrcchh

McKinsey Global Institute AI 
frontiers insights.

Chui et al. 2018 x

Identify and quantify the economic 
benefits of advanced AI techniques 

across industries and business 
functions. 

Medium No No No No No

OECD Framework for the 
classification of AI systems.

OECD 2022 x
Develop a comprehensive framework 

for characterizing AI systems based on 
factors relevant to policy development.

High Yes No No No No

Universal workflow of AI for 
energy savings + AI 

implementation framework 
development for building 

energy savings.

Lee et al. 2022 x x
Identify practical AI & build a framework 
for deploying them to optimize building 

energy use.
Medium Yes No No No No

Implementation of AI: 
Roadmap for business model 

innovation.
Reim et al. 2022 x

Develop a phased roadmap with clear 
steps for implementing AI solutions 

across the firm's key operations.
Low Yes No No No No

3D indicator for guiding AI 
applications in the energy 

sector.
Quest et al. 2022 x x x

Developing a multi-criteria decision-
making framework for promising AI 

applications: a stakeholder-oriented 
typology.

Low Yes Yes Yes No No

Schneider Electric 
Sustainability Research: AI 

for impact Compass.
SRI 2024 x x x

Guiding the most impact AI applications 
for the energy transition, with a specific 
focus on the scalability potential across 

contexts and the risks.

Low Yes Yes Yes Yes Yes
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The Net Digital Impact Score quantifies this dimension, 
denoted as IS ∈ [1, 4], and reflects the potential leverage of 
an AI application. It measures the environmental impact of 
AI applications, ranging from negative impact (e.g, positive 
carbon footprint, IS = 1) to positive impact (e.g, negative 
carbon footprint, IS = 4). For our assessment, IS will focus 
on greenhouse gas (GHG) emissions to evaluate the 
decarbonization potential of AI. 

As proposed by Quest et al., an indicator can be designed to 
include a sensitivity aspect, focusing on one or more specific 
criteria. To handle this, the AI for Impact Compass allows for 
different weighting options.
• It incorporates weighting factors (ω

α
 ∈ [0, 1], α = 1, 2, 3) 

associated with each dimension (Impact, scalability, and 
risk). 

• These weights sum to 1 (Σ³
α=1

 ω
α
 = 1) and can be 

adjusted to reflect the specific priorities and risk tolerance 
of different stakeholders or scenarios.

The AI for Impact Compass
Main Principles

Establishing what-if sensitivity decision postures

Total Score Formula

Quantifying the Impact

This dimension, denoted as the Scalability Score SS ∈ [1, 
9], is determined by combining the Artificial Intelligence 
Technology Readiness Level (AITRL) and the AI Adoption 
Readiness Level (AIARL). 
• The AITRL is a specialized adaptation of the Machine 

Learning Technology Readiness Level (MLTRL) model 
proposed by  Lavin et al. (50), a general maturity model 
to address ML specifically, assesses the technological 
maturity of the ML system. Following a thorough review 
and analysis of the MLTRL, we have determined that its 
scope can be broadened to encompass the entire field of 
Artificial Intelligence (AI). This generalization is deemed 
viable without encountering major conceptual issues.

• The AIARL is derived from the ARL developed by the U.S. 
Department of Energy (DOE) (51), and assesses the ability 
of an AI technology to optimize its implementation across 

Quantifying the Scalability

This dimension, denoted as RS ∈ [1, 4], quantifies the Risk 
Level. As a reference, we have adopted the categorization 
from the European Commission’s AI risk framework. Hence, 
RS ranges from 1 (minimal risk) to 4 (unacceptable risk), 
where a lower score indicates a less risky application.

Quantifying the Risk
 

Defining weighting schemes
 

Decision posture 1: Balanced
This posture represents a baseline approach where all three 
dimensions (Impact, scalability, and risk) are considered 
equally important. The weights associated with each 
dimension are equal (ω

1
 = ω

2
 = ω

3
 = 1/3).

Decision posture 2: Climate Impact
This posture prioritizes AI applications that have a clearly 
demonstrated positive environmental impact. Here, a higher 
weight is assigned to the Impact dimension (ω

1
 = 0.6) and 

Scalability dimension (ω
2
 = 0.3) reflecting the importance of 

a mature and readily deployable solution. Conversely, lower 
weight is assigned to Risk (ω

3
 = 0.1) as the focus is on short 

term climate change mitigation.

Decision posture 3: Risk-Avoidance
This posture prioritizes minimizing potential risks associated 
with AI applications. It aligns with the interests of policymakers 
who aim to ensure AI development adheres to regulatory 
frameworks. Here, the Risk dimension receives the highest 
weight (ω

3 
= 0.8), reflecting the paramount importance of 

safety and regulatory compliance. Conversely, lower weights 
are assigned to Impact (ω

1
 = 0.1) and Scalability (ω

2
 = 0.1) as 

the primary concern is mitigating risks.

The overall assessment uses a continuous scale for the 
Total Score, denoted as TS ∈ [0, 1], where 0 represents the 
lowest potential benefit and 1 signifies the greatest potential 
- combining Impact at Scale with limited Risk - for climate 
change mitigation.

To facilitate decision-making regarding potential AI 
applications, the climate impact score is further categorized 
as follows:
• TS < 0.3: Limited Impact - Applications scoring below 

this threshold warrant careful consideration or even 
exclusion due to potential negative impact on climate 
goals.

• 0.3 ≤ TS < 0.6: Contextual Impact - Applications within 
this range may offer climate benefits, but their use should 
be evaluated based on specific contexts to maximize 
positive environmental impact.

• TS ≥ 0.6: Potential High Impact - Applications surpassing 
this threshold demonstrate substantial potential for 
mitigating climate change and merit prioritization for 
further, in-depth analysis on an individual basis.

Final scoring calculation
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TS = 1 - [𝜔
1
 ⋅ |4 - IS| /3 + 𝜔

2
 ⋅(( |9 - AITRL| / 8 +  |9 - AIARL| / 8) / 2)  + 𝜔

3
 ⋅ |1 - RS | / 3]
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Step 1: Calculating the Net Digital Impact Ratio
 
This step quantifies the relative magnitude of positive and 
negative impacts on GHG emissions, which is the chosen 
criterion for environmental impact in this publication.

• The left part of the framework designates negative 
environmental effects, which potentially contribute to 
environmental degradation.

• Conversely, positive impacts that promote environmental 
sustainability are assigned to the right.

The ratio calculation involves determining the quotient 
between the sum of positive impacts (Σ Positive Impacts) 
and the absolute values of the sum of negative impacts (Σ | 
Negative Impacts |). Mathematically, this is expressed as:

Ratio = Σ Positive Impacts / Σ | Negative Impacts | 

Methodological note: The Ratio should integrate both 
the timeframe for impact assessment and the necessary 
underlying assumptions (such as the evolution of service 
usage, the efficiency of data centers, and decarbonization of 
the electricity used...). In assessing environmental impact, 
we have expressed results as a ratio of positive to negative 
outcomes, rather than a simple difference. This approach 
offers several advantages. Firstly, it normalizes impacts 
across projects of varying scales, allowing for meaningful 
comparisons. Second, it aligns with the concept of an 
“environmental return on investment,” where negative impacts 
are akin to investments and positive impacts are the resulting 
benefits. This framing emphasizes the need to maximize 
positive outcomes relative to the environmental costs 
incurred.

For many years, the absence of robust methodologies hindered fact-based discussions regarding the impact of digital 
technologies. However, the emergence of frameworks like ITU-T L.1480 (53), EGDC (54), and NZI4IT (55) has given access to 
quantitative assessment methods. This shift empowers various stakeholders, including industries, to move beyond solely qualitative 
assessments.  In May 2024, the Schneider ElectricTM Sustainability Research Institute further contributed to this advancement by 
developing a holistic framework – the Net Digital Impact framework (50), encompassing the full spectrum of impacts, ranging from 
direct effects on specific entities to indirect and systemic consequences across broader economic and societal systems. Based 
on this framework, we propose a scoring declination through the Impact Score. This Impact Score denoted as ‘IS’, reflects the 
potential impact of an AI application on pre-defined sustainability criteria. The score is calculated in two steps.

Quantifying the Impact

Step 2 : Calculating the ‘IS’ Score

Based on the calculated ratio, the IS score is assigned using 
a pre-defined scoring rubric. This rubric establishes specific 
ranges for the ratio that correspond to varying levels of 
environmental benefit:

• Ratio < 0.5: This outcome indicates that the negative 
environmental impacts outweigh the positive impacts. 
In this scenario, the IS score is assigned a value 
of 1, signifying a minimal or potentially detrimental 
environmental effect.

• Ratio between 0.5 and 1.5: This range represents 
an uncertainty zone where the positive and negative 
impacts are relatively balanced. The IS score is assigned 
a value of 2, reflecting the inconclusive nature of the 
environmental impact.

• Ratio between 1.5 and 5: This outcome suggests that 
the positive environmental impacts are greater magnitude 
than the negative impacts. The IS score is assigned a 
value of 3, signifying a positive environmental contribution.

• Ratio > 5: This outcome signifies a highly beneficial 
environmental impact. The IS score is assigned a value of 
4, highlighting the significant positive contribution of the AI 
application to environmental sustainability.

Figure 6. The Net Digital Impact Framework. 
Schneider ElectricTM Sustainability Research Institute, 2024.
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Chapter 3 – Beyond Direct Effects: Towards a unified approach

3.3. The Net Digital Impact framework.

Schneider Electric™ Sustainability Research Institute introduces an extension of the Net Digital Impact framework suggests a fusion of the 
classifications from Horner et al. (direct, indirect and systemic), offering a versatile analytical scope that can encompass various potential 
impacts, such as those related to energy, carbon emissions, and resource utilization. The proposed framework is essentially based on 
Horner et al. proposal and aims to integrate the relevant existing and future methodologies, such as, for instance, the ITU-T L1480.
• It’s a multi-criteria framework, which embarks all potential needed measurement such as for instance CO

2
, resources, energy demand, 

economical, society criterias.
• The sum of the impacts of each category reflects the Net Impact of digital on the considered criteria. The result is a physical 

value, not a scoring.
• The more negative the Net Digital Impact, the more the cumulative impacts of digital technology are positive for the environment.  

The impact of digital technology on the economy and society needs to be evaluated based on specific chosen criteria. While there  
might be positive outcomes in some aspects, a comprehensive analysis must acknowledge and address potential drawbacks. It is  
thus possible that the Net Digital Impact can be negative for some criteria and positive for others, and this for the same field of study.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

System perspective

Environment (CO
2
, energy, resources…), Economy (jobs, welfare…), Society (consumption patterns, circularity, sobriety…)

∑ 1,11 = Net Digital Impact

User perspective

Technology perspective

Society-wide change (+) Society-wide change (-)

Economy-wide change (+) Economy-wide change (-)

Indirect rebound (+) Indirect rebound (-)

Direct rebound (+)

Substitution (+)

Substitution (-)

Direct effects (+)
• Embodied (+)
• Operational (+)
• Disposal (+)

Efficiency 
Optimization (-)

6 11

5 10

4

3

2
8

9

1 7

+ -
Figure 4. The Net Digital Impact Framework. Schneider Electric™ Sustainability Research Institute, based on Horner et al.

The taxonomy proposed is the following:

• Direct effects (+): 
 – Embodied: Impact to design, manufacture and maintain the end-use technology and its associated ICT infrastructure.
 – Operational: Impact to operate the end-use technology and its associated ICT infrastructure.
 – Disposal: Impact to dispose the end-use technology and its associated ICT infrastructure.

• Efficiency/Optimization (-): Positive impacts on other applications (e.g., efficiency).
• Substitution (+ or -): Impact of life-cycle savings from substitution of an existing service/technology with digitalization.
• Direct rebound (+ or -): Impact of additional technology use, stimulated by lower costs and improved utility.
• Indirect rebound (+ or -): Impact of manufacturing and consuming technology, whose demand has increase because of the cost savings 

from substituting technology. 
• Economy-wide change (+ or -): Impact in multiple markets because of the economy-wide adjustments in prices and quantities following 

the introduction of technology.
• Society-wide change (+): Impact on society and population because of far-reaching changes in industrial and organizational structures 

and social practices following the introduction of technology.

Combining the Net Digital Impact Framework with the accurate quantification methodologies.

This framework is a conceptual tool that aims to establish an integrated view for the analysis of digital effects. However, it is important to 
understand that currently, many initiatives led by reputable organizations (ITU, ARCEP, Green IT, etc.) are developing detailed methodologies 
that can be incorporated into this framework. In addition, it is key to realize that the more we try to model all of the effects, the more the 
quantification will be subject to assumptions. Therefore, to effectively measure and analyze the impact of digital technologies, we 
need to carefully select use cases that strike a balance between feasibility and impact. On the one hand, we must avoid overly 
simplistic cases that are easy to quantify but lack the scale to inform meaningful decision-making. On the other hand, we must avoid overly 
broad cases that introduce too many assumptions and variability, hindering our ability to draw reliable conclusions. This is the challenge that 
Schneider Electric will be addressing in its upcoming studies.
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Assessing the true impact of digital solutions, particularly AI, is difficult due to the challenge of measuring their scalability. Many 
studies are theoretical and fail to account for real-world complexities, leading to inaccurate extrapolations. Even studies with 
quantified evidence (GeSI, GSMA) often lack reliable methods for scaling their findings. To address this, the Scalability Score 
(SS) is introduced. Combining the maturity of AI technology (AITRL) and the ease of deployment (AIARL), it aims to provide a 
more accurate assessment of the potential impact of AI solutions by considering scalability from the outset.

Quantifying the Scalability (Maturity Part)

Figure 7. Artificial Intelligence Technology Readiness Levels.

AITRL spans research (red) through prototyping (orange), productization (yellow), and deployment (green). 

Source: Lavin et al.

AITRL assessment

Lavin et al., in a publication in Nature (56) , leveraging their 
expertise in both spacecraft engineering and machine 
learning, have created the ‘Machine Learning Technology 
Readiness Levels’ (MLTRL) framework, which employs 
Technology Readiness Levels (TRLs) to assess and convey the 
advancement of ML/AI systems during their development and 
deployment. Here are the fundamental levels as scales-criteria 
for scoring.

• Level 0 (First principles): Focuses on literature review, 
mathematical foundations, and understanding data. Code 
is not required, but data readiness is assessed.

• Level 1 (Goal-oriented research): Low-level experiments 
are conducted to analyze model properties using sample 
data. Code is research-caliber, and semantic versioning 
practices are initiated.

• Level 2 (Proof of Principle development): Active R&D is 
initiated in testbeds, with a formal research requirements 
document. This is a key decision point for moving towards 
prototyping or further research.

• Level 3 (System development): Code development 
focuses on interoperability, reliability, maintainability, and 
scalability. Code becomes prototype-caliber and product 
engineering is involved to define SLAs and SLOs.

• Level 4 (Proof of Concept Development): The 
technology is demonstrated in actual scenarios using 
real data. This involves scaling up data collection and 
processing, evolving experiment metrics, and considering 
AI ethics.
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• Level 5 (Machine learning capability): The technology 
transitions from an isolated solution to a module in a 
larger application. Knowledge and expertise are shared, 
and the focus is on scaling data pipelines and addressing 
data governance challenges.

• Level 6 (Application development): Significant software 
engineering is undertaken to achieve product-caliber 
code. ML modules are robustified, model explanations 
are validated, and deployment settings are thoroughly 
addressed.

• Level 7 (Integrations): The technology is integrated into 
existing production systems. Tests for specific scenarios, 
a “golden dataset,” metamorphic testing, and data 
intervention tests are implemented. Data governance is 
prioritized, and ethical considerations are revisited.

• Level 8 (Mission-ready): The technology is demonstrated 
to work in its final form under expected conditions. 
Additional tests cover deployment aspects, and a go/no-
go decision for deployment is made.

• Level 9 (Deployment): The focus is on maintenance 
engineering, monitoring data quality, concept drift, 
and data drift. Automated evaluation and reporting 
are implemented, and mechanisms for retraining and 
improving models are established.

Calculation

The associated Maturity Level corresponds directly with the 
AITRL scoring number (from 1 to 9).
Note : TRL = 0 is not part of the evaluation.
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Quantifying the Scalability (Adoption Part)

AIARL assessment

To successfully deploy a technology, it’s not enough to 
focus on its technical readiness. The economic viability and 
acceptance within the broader ecosystem are equally crucial. 
This realization led the Office of Technology Transitions (OTT) 
(51) to develop the AI Adoption Readiness Level (AIARL) 
framework as a complement to the traditional Technology 
Readiness Levels (TRL). 
 
The AIARL framework goes beyond technical aspects 
and assesses the broader adoption criteria across 17 
dimensions, encompassing four key areas: the technology’s 
value proposition, market acceptance, resource availability, 
and societal license to operate. By evaluating these factors, 
the AIARL framework provides a comprehensive view of a 
technology’s readiness for adoption, helping to identify and 
mitigate potential barriers to successful deployment at scale.

Each factor can be defined as ‘Low’, ‘Medium’, or ‘High’. 

Category #1: Value Proposition

Assesses the ability of a new technology to meet the 
functionality required by the market at a price point that 
customers are willing to pay, to meet market demand.

The criteria considered are:
1. Delivered Cost
2. Functional Performance
3. Ease of Use / Complexity

 
Category #2: Market Acceptance

Captures the target market(s) demand characteristics and 
barriers posed by existing players - including competitors, 
customers, and other value chain players.

The criteria considered are:
4. Demand Maturity / Market Openness
5. Market Size
6. Downstream Value Chain

Category #3: Resource Maturity

Determines barriers standing in the way of inputs needed to 
produce the technology solution.

The criteria considered are:
  7. Capital Flow
  8. Project Development, Integration, and Management
  9. Infrastructure
10. Manufacturing and Supply Chain
11. Materials Sourcing
12. Workforce
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Calculation

Instructions for determining AIARL Score:
• Count the total number of barriers evaluated as “High”.
• Count the total number of barriers evaluated as “Medium” 
• Refer to the look-up table to identify the corresponding 

ARL Score based on the number of “High” and “Medium” 
dimensions.

The given number corresponds to the determined Adoption 
Level.

Figure 8. Combining the risk dimensions into an AIARL score.

Office of Technology Transitions, U.S. Department of Energy.

Category #4: License to operate 

Identifies the societal (national, state, and local), non-
economic barriers that can hinder the deployment of a 
technology.

The criteria considered are:
13. Regulatory Environment
14. Policy Environment
15. Permitting and Siting
16. Environmental and Safety
17. Community Perception
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Why integrate Risk as a primary criterion?

The digitalization of the energy sector is driven by the 
increasing availability of data from smart meters and grid 
operations, necessitating efficient analysis solutions. Quest et 
al. indicates that AI presents itself as a potential cornerstone 
for utilities, offering projections of up to 25% reduction in 
operating expenses and 20-40% performance gains in areas 
like safety, reliability, and customer satisfaction (57). To achieve 
these benefits, AI integration necessitates a strategic shift, 
fostering data-driven decision-making and optimizing systemic 
and process efficiency.

The meteoric rise of AI has positioned it at the forefront 
of research, industry, and policy discussions. This rapid 
evolution encompasses not only models and algorithms but 
also a paradigm shift towards autonomous AI applications, 
potentially operating with independent decision-making 
capabilities (58), (59). However, alongside this progress, concerns 
regarding explainability, transparency, and algorithmic bias 
are gaining prominence in the regulatory landscape. 

Broader issues of cybersecurity and regulatory compliance. 
compound these concerns.The inherent risk associated with 
AI solutions stems from the underlying models, particularly 
the opaqueness of neural networks and their tendency to 
create “black box” outcomes. While these networks excel 
at approximating complex, non-linear functions for problem-
solving, their outputs are often difficult to interpret and control, 
hindering operational oversight. This lack of explainability 
will likely become more pertinent as neural network adoption 
expands, potentially exacerbating the overall risk profile of AI 
applications.

In order to anticipate this governance challenge, the European 
Union introduced a risk assessment for both AI development 
strategies and legal framework (60). This aligns with their 
broader vision of harnessing digital advancements to create 
a human-centric, sustainable, and resource-efficient future 
(61 - 64).

The recently proposed EU AI Act (65), published on July 12th, 
2024, represents a new approach to AI regulation. It aims 
to promote the creation of high-quality and trustworthy AI 
applications while mitigating potential risks associated with AI 
deployment through regulations and sanctions.

The AI Act classifies AI according to its risk:
• Unacceptable risk is prohibited (e.g. social scoring 

systems and manipulative AI).
• Most of the text addresses high-risk AI systems, which 

are regulated.
• A smaller section handles limited risk AI systems, subject 

to lighter transparency obligations, which are regulated 
to ensure the risk is properly  mitigated. Developers and 
deployers must inform end-users that they are interacting 
with AI, such as in the case of chatbots and deepfakes.

• Minimal risk is unregulated (including the majority of AI 
applications currently available on the EU single market, 
such as AI enabled video games and spam filters – at 
least in 2021; this is changing with generative AI).

Most obligations fall on providers (developers) of high-risk AI 
systems.
• Those who intend to place on the market or put into 

service high-risk AI systems in the EU, regardless of 
whether they are based in the EU or a third country.

• And also third country providers where the high risk AI 
system’s output is used in the EU.

Users are natural or legal persons that deploy an AI system in 
a professional capacity, not affected end-users.

This section defines the rationale behind the risk assessment criteria and the way to determine it.

Quantifying the Risk (Regulatory)

Calculation

For risk assessment, we leverage the EU AI risk framework 
(66). This robust framework categorizes AI applications based 
on their a priori potential for harm. It assigns a Risk Level 
(RS) ranging from 1 to 4, with 1 signifying minimal risk and 4 
indicating unacceptable risk. By employing this framework, 
we ensure a clear understanding of the potential hazards 
associated with an AI application. Lower RL scores indicate 
applications with less risk, allowing for a more streamlined 
development and deployment process. 

Risk assessment

Figure 9. Risk Level Assessment.

Source: EU AI risk framework.
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Risk assessment levels
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Total Score Assessment: A Summary
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Table 3. AI for Impact Compass - Assessment and Scoring tool.

Source: Schneider ElectricTM Sustainability Research Institute.

Figure 10. Graphic representation of the Total Scoring from the AI for Impact Compass.

Source: Schneider ElectricTM Sustainability Research Institute.

Graphic representation of Total Scoring

If Ratio < 0.5: The negative impacts outweigh the positive impacts.

If Ratio between 0.5 and 1.5: Uncertainty zone where the positive and negative impacts are balanced. 

If Ratio between 1.5 and 5: The positive impacts have a greater magnitude than the negative impacts. 

If Ratio > 5: Highly beneficial environmental impact. 

Goal-oriented research: From principles to practical use

Proof of Principle development: Active R&D initiated

System development: Sound software engineering

Proof of Concept development: Demonstration in real scenario

Machine learning capability: R&D to product transition

Application development: Robustification of ML modules towards use-cases

Integrations: ML infrastructure, product platform, data pipelines, security protocols

Mission-ready: End of system development

Deployment: Monitoring the current and improving the next

Value Proposition Assessment

Market Acceptance Assessment

Resource Maturity Assessment

License to Operate  Assessment

Minimal risk

Limited risk

High risk

Unacceptable risk

TTSS  <<  00..33::  LLiimmiitteedd  IImmppaacctt - Applications scoring below this threshold warrant careful consideration or 
even exclusion due to potential negative impact on climate goals.

00..33  ≤  TTSS  <<  00..66::  CCoonntteexxttuuaall  IImmppaacctt  - Applications within this range may offer climate benefits, but their 
use should be evaluated based on specific contexts to maximize positive environmental impact.

TTSS  ≥  00..66::  PPootteennttiiaall  HHiigghh  IImmppaacctt  - Applications surpassing this threshold demonstrate substantial 
potential for mitigating climate change and merit prioritization for further, in-depth analysis on an individual 
basis.

AITRL

AIARL

RS

TS

What-if sensitivity scenarios

Scenario #1 : Balanced ; Impact weight = ω1 = Scalability weight ω2 = Risk weight ω3 = 1/3

Scenario #2 : Climate Impact ; Impact weight = ω1 0,6 ; Scalability weight ω2 = 0,3 ; Risk weight ω3 = 0,1

Scenario #3 : Risk Avoidance ; Impact weight = ω1 = 0,1 ; Scalability weight ω2 = 0,1 ; Risk weight ω3 = 0,8

Total 
Score

General Formula

IS

NNoottaattiioonn

SS

Risk EU AI Act 4 Risk levels

CCrriitteerriiaa

Impact

Scalability

Lavin et al. 9 Maturity levels

4 Assessment 
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Scoring related to the 

Impact Ratio = 
Σ Positive Effects / Σ | 

Negative Effects |

CCrriitteerriiaass
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Use cases preliminary ranking
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Buildings and Cities.
B1. HVAC optimization. (Purpose of Chapter V)
B2. Flexibility and microgrids.

New Electricity Systems.
E1. Forecasting supply & demand.
E2. Improving scheduling and flexible demand.

Industries.
I1. Optimized energy demand.
I2. Operational efficiency through modern maintenance.

Figure 11. Preliminary ranking of AI-Energy use cases through the AI for Impact Compass. 

Schneider ElectricTM Sustainability Research Institute.

Data Centers & ICT.
D1. Energy Efficiency and AI-ready DC
D2. Flexibility at DC level

New Mobilities
M1. Electrification of Fleets / Electrical Vehicles
M2. Battery & Storage Management

The 40 curated use cases were assessed using the AI for 
Impact calculation sheet. For each use case, we determined: 

• Impact Score (IS): Through a preliminary quantification 
based on Literature Reviews and Schneider Electric data. 
Due to the complexities involved in precisely calculating 
the full effects of digital on a use case, we assigned a 
score of 2 (“uncertain”) for all IS values.

• Scalability Score (SS): Combining the AI Adoption 
Technology Readiness Level (AITRL) and the AI Adoption 
Level (AIARL), based on established references.

• Risk Score (RS): Using the EU Act scale.

To visualize the potential sensitivity of the scoring, we 
conducted assessments under three scenarios:
• Conservative: Assumes IS = 2 and conservative estimates 

for AITRL, AIARL, and RS.
• Average: Assumes IS = 2 and strictly follows guidelines for 

AITRL, AIARL, and RS.
• Optimistic: Assumes IS = 3 and strictly follows guidelines 

for AITRL, AIARL, and RS. 

The preliminary assessment highlights ten use cases for 
further exploration in our research roadmap. We emphasize 
that while our list is comprehensive, it does not fully capture 
the complexities of this evolving field. Therefore, caution is 
advised when interpreting these findings.

As a reminder, the scoring interpretation is as follows: 
 
TS < 0.3: Limited Impact 
0.3 ≤ TS < 0.6: Contextual Impact 
TS ≥ 0.6: Potential High Impact

Ten high potential use cases for further study
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5 An Example:

AI-Powered HVAC 
in Buildings
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AI-Powered HVAC : What is at stake?
Buildings, including residential and commercial, consume 
approximately 40% of the world’s primary energy and account 
for around 30% of global CO2 emissions (76). Therefore, 
reducing energy consumption in buildings is crucial for 
achieving sustainable development and lowering carbon 
emissions (77). 

Heating, ventilation, and air-conditioning (HVAC) systems 
account for 35%-65% of the total energy consumption in 
buildings, making them a significant target for energy savings.

With rising energy prices and increasing HVAC usage, there 
is an economic and environmental motivation to improve the 
energy efficiency of HVAC systems.

According to the International Energy Agency (IEA) (78), 
the peak power load of countries with currently low HVAC 
penetration rates is expected to increase by around 45% by 
2050.
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AI has emerged as a promising solution to address these 
challenges. AI can optimize HVAC systems for energy savings 
and improved thermal comfort, which traditional methods 
struggle to achieve. Machine learning algorithms can learn 
complex patterns, make informed decisions, and optimize 
performance based on feedback from the environment. 

Machine learning has been applied to HVAC systems since the 
1990s, and research (79) has shown that it can reduce energy 
consumption by 5%-30% and improve indoor comfort. 
 
In this chapter, we apply the AI for Impact Compass to the 
AI-powered HVAC use case, providing a practical example of 
how to quantify its potential impact. We will also delve into the 
advantages and challenges associated with this methodology.
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Setting the context

As economies develop, a greater emphasis is placed on indoor
comfort, with higher requirements for HVAC control, while 
modern buildings are becoming more dynamic and complex. 
 
Older buildings, unlike modern structures with advanced 
materials and integrated Building Management Systems 
(BMS), often lack the inherent efficiency of newer designs. 
Implementing AI in these existing buildings provides a 
compelling solution for achieving significant energy savings 
without disruptive renovations. This is especially attractive for 
managers of large portfolios of aging buildings.

The growing trend of air conditioning installations in 
households is increasing the charge load, particularly during 
peak electricity demand periods. This surge in demand can 
potentially threaten the safety of power grids. Additionally, 
modern buildings now have more complex scenarios that 
include on-site generation, energy storage systems, and 
electric vehicle charging, which further complicates the 
building service system. 

The stability and intermittency of on-site generation systems, 
such as solar photovoltaics, also pose challenges to the 
building service system. To optimize the energy efficiency of 
these grid-interactive energy-saving buildings, flexible control 
methods that can manage the increasing complexity of the 
building service system are necessary. 
 

 

 Why utilize AI/ML in HVAC Building Systems?

Thermal control and forecasting:  Thermal comfort is a 
multifaceted concept that encompasses various factors, 
such as air temperature (76), radiation temperature (77), (78), 
airspeed (79), and relative humidity (80). Additionally, personal 
factors such as metabolic rate (81), clothing insulation (82), age 
(83), gender (84), and adaptation (85), (86), also play a significant 
role in determining thermal comfort. Accurate forecasting of 
temperature requirements within the HVAC system is crucial 
for efficient operation.  ML algorithms, such as deep belief 
networks, present an alternative to traditional physical models.  
These data-driven approaches can potentially achieve higher 
accuracy with lower computational demands compared to 
traditional methods (73), (74).

Energy savings:  Machine Learning can be employed to 
develop intelligent control systems for HVAC units. Deep 
Reinforcement Learning (RL) has been shown to be particularly 
effective in this domain.  Kazmi et al. (75) demonstrated that 
deep RL can achieve significant energy reductions (up to 
20%) while requiring only a minimal set of sensor data (air 
temperature, water temperature, and energy use). Similar 
advancements have been made in optimizing the cooling 
systems of data centers. 
 
The whole approach is described in Figure 12. Machine 
learning is a collection of algorithms and statistical models 
that enable computers to learn from data and improve their 
performance on a specific task without being explicitly 
programmed. It forms the foundation of many artificial 
intelligence (AI) systems.Machine Learning can also learn from 
an environment and optimize performance from experience with 
a feedback loop involving rewards and penalties. 

Furthermore, AI reduces the reliance on skilled HVAC 
engineers for system optimization. A well-trained AI system can 
apply its knowledge of various building types and situations 
to autonomously manage HVAC controls, freeing up human 
resources for more strategic tasks.

The two goals of AI-powered HVAC.
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Figure 12. AI-Powered HVAC Approach.

Source: Schneider Electric
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In light of the aforementioned background, SISAB identified 
three key challenges that necessitated solutions:

• Energy Cost Reduction: Minimize overall heating energy 
consumption and the associated costs while ensuring a 
consistent indoor temperature of 20°C (68°F).

• Non-intrusive Implementation: Develop a solution that 
seamlessly integrates with the existing buildings and sys-
tems, eliminating the need for equipment replacements.

• Real-Time Data Analysis and Optimization: Establish a 
system capable of analyzing the extensive sensor data to 
determine optimal heating setpoints and implement real-
time adjustments for improved energy efficiency.

Case Description

Project’s Inception in Stockholm’s Educational Assets

The Stockholm Inner City School Board (SISAB) (86) is 
responsible for the ownership, operation, and maintenance 
of over 600 preschools, primary schools, and colleges in 
Stockholm, Sweden. 

This extensive portfolio necessitates a significant annual 
energy budget of approximately €24.3 million ($26.5 million). 
Thus, even minor enhancements in energy efficiency can 
lead to significant cost savings and a lower carbon footprint 
for the portfolio. These savings can be strategically utilized 
to either reduce their operational budget or reinvest in the 
implementation of innovative energy-saving technologies. The 
educational facilities managed by SISAB vary considerably 
in size (ranging from 100 to 48,000 square meters) and age 
(between 7 and 15 years old). Maintaining a comfortable year-
round learning environment for the 200,000 students and staff 
necessitates the implementation of diverse heating setpoints 
across these facilities.

Prior to 2013, SISAB encountered challenges due to the 
utilization of multiple, vendor-specific building management 
interfaces. However, a centralized operations center, modeled 
after a network operations center used for data center 
management, was established in 2013. This centralized 
system now serves as the sole platform for implementing 
building control modifications, including adjustments to heating 
system setpoints. Even on-site technicians require specific 
authorization to make adjustments within their designated 
school building.  Previously, due to the involvement of 
numerous contractors, tracing the history of control 
modifications proved to be a significant challenge.

To enhance the real-time control of heating and ventilation 
systems, SISAB has progressively deployed temperature and 
CO2 sensors within their school buildings, accumulating a 
current total of over 20,000 sensors. This sensor network 
generates an estimated one million data points daily. However, 
neither the existing heating and ventilation systems nor 
the current maintenance personnel possess the capability 
to effectively analyze this vast dataset to identify optimal 
setpoints and subsequently implement real-time adjustments.

Figure 13  AI-Powered HVAC Optimization solution principles.
Source: Schneider Electric
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Main objectives

We did a preliminary assessment of this project to check if it 
has the potential to be a referential use case in terms of depth 
of analysis. In the present paper and the next pages, we will 
only go through a first assessment through the AI for Impact 
Compass, but we will publish a second research with a holistic 
quantification of the effects by 2024.

The criteria for the case selection are the following:
• Representative sample of over 600 buildings.
• Wide variety of building profiles and technologies (legacy 

to modern IoT).
• Availability of real measurements for heating energy 

savings, electricity savings, occupant complaints, and 
payback.

• Use of Reinforcement Learning technology with a decade 
of practical use.

• Strong local ecosystem and stakeholder collaboration for 
a comprehensive view of the case and associated data.

• Potential for scalability and replicability in addressing 
major climate change topics of HVAC in buildings, aiding 
decision-makers (policy, investors).

Project Preliminary Assessment
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Measurements

Key measures

This study investigates the effectiveness of an AI solution implemented in 624 school buildings during the winter season (November 
2020 - March 2021). Given the seasonal operation of these schools, a comparative analysis was conducted using energy bills from 
the preceding winter (November 2019 - March 2020) as a baseline (control group). It is important to note that the measures were 
taken during the COVID period. The main findings are:

• Energy Savings: A reduction in heating energy consumption (4%) and overall electricity usage (15%).
• Environmental Impact: Greenhouse gas (GHG) emissions were reduced by 205 tons compared to the reference scenario 

without the AI service, suggesting a positive indirect impact (emissions baseline : November 2019 - March 2020) 
• Occupancy Comfort: There was a 23% decrease in complaints from building occupants concerning comfort levels, 

suggesting improved temperature and air quality management.
• Economic Viability: The analysis suggests a favorable payback period of 2 years, indicating a potentially cost-effective 

investment in educational facilities.

Figure 14 - AI-Powered energy adjustments.
Source: Schneider Electric.
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Results

Figure 15 - AI-Powered temperature adjustments.
Source: Schneider Electric.

The solution deployed is an AI service on top of the existing Building Management System. The solution did not need any changes 
to SISAB’s current components, such as building controllers. Instead, the cloud-based AI service works with their existing building 
management system (BMS) without replacing it. It’s like having a virtual building operator using the same controls as a human 
would. However, unlike a human who makes changes a few times a year based on complaints, the AI solution adjusts settings every 
15 minutes to continuously optimize results. It works with the conventional BMS, which handles basic management functions, while 
the AI service adjusts temperature and air pressure settings to achieve optimal indoor climate and energy performance.
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Practicing the Compass - First results

Total Score (TS) (from 0 to 1)

From the above, it is evident that the considered application 
has a moderate impact (at least in Sweden), good scalability, 
and low risk. Depending on the priorities and risk attitudes 
of the decision-maker, these factors can be aggregated in 
various ways. 

The Total Score varies depending on the weighting scheme 
(decision posture). We have examined three postures with the 
following results:
• Decision posture #1: Balanced: TS = 0.54
• Decision posture #2: Climate Impact: TS = 0.62
• Decision posture #3: Risk Avoidance: TS = 0.4

In the “Balanced” and “Risk Avoidance” postures, the Total 
Score suggests a Contextual Impact (0.3 ≤ TS < 0.6), 
indicating that these applications may offer climate benefits, 
but their effectiveness should be evaluated on a case-by-case 
basis. 
 
However, the “Climate Impact” scenario yields a TS of 0.62, 
suggesting a Potential High Impact (TS ≥ 0.6), indicating 
a substantial potential for climate change mitigation and 
warranting further detailed analysis. While the “Scalability 
Score” and “Risk Score” are not highly sensitive to analysis, 
the “Impact Score” (IS) has been set to 2, as a total 
quantification has not yet been conducted. In the “Climate 
Scenario,” an IS of 3 would result in a TS of 0.71, and an IS of 
4 would yield a TS of 0.91. 
 
In conclusion, the AI for Impact Compass identifies the 
AI-powered HVAC use case as a potential high-priority 
application, or a potential “no-brainer,” that warrants a 
comprehensive, in-depth bottom-up quantification.

I. Impact Score (IS) : 2 on a max of 4 (2 / 4)

As a preliminary estimate, we have assigned a provisional 
Impact Score of 2.

This score is based on the conservative assumption that the 
impact ratio (the absolute value of the sum of negative impacts 
divided by the sum of positive impacts) must be calculated in 
much precisely.

For this exercise, the criteria is GHG emissions. It is important 
to note that GHG emissions are heavily influenced by a 
country’s electricity sources. In Sweden, the electricity mix 
is largely based on renewable and low-emission sources, 
resulting in lower GHG emissions.

II. Scalability Score (SS) : 7.5 / 9

II.1. Technology Maturity (AITRL): 8 / 9

The technology’s maturity, assessed using the Machine 
Learning Technology Readiness Levels (AITRL) framework, 
indicates a score of 8 to 9. This suggests successful 
integration, industrialization, and deployment with multiple 
version upgrades. 

Following a technology assessment of the physical operations 
in the Stockholm areas, a review with technical experts was 
conducted, confirming that for this specific use case and 
context, an AITRL score of 8 was adopted.

The following considerations were taken into account:

Qualification of the onboarding process:
• Connection and Categorization: Pertinent data points are 

selected and classified into observable and actionable 
categories. Observable data includes sensor data, 
computed values, and external sources, while actionable 
data typically consists of setpoints and their respective 
allowed ranges.

• Training: The system introduces randomized offsets on 
control points to learn the building’s behavior.

• Application: Building-specific models are created and 
applied for control decisions. Each building has its unique 
model, which is retrained daily using a neural net-based 
approach with some human-imposed heuristics. The 
model captures dynamic building behavior and the impact 
of regular activities, considering time dependencies such 
as the day of the week and time of day.

AI Optimization Model Predictive Control approach: 
• Model Predictive Control (MPC) over the next 12 hours
• Weather forecast inputs: temperature, wind, cloud cover
• Cost function balances energy cost and comfort
• The previous version used a genetic algorithm, now 

replaced by gradient descent-type method
• Applied to solve nonlinear problem
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III. Risk Score (RS): 2 / 4

The evaluation of risk is conducted using objective criteria that 
consider current solutions, security of supply, and compliance 
with existing legislation on fundamental rights.

This assessment leads to a significant number of AI solutions 
being classified as high risk (88), primarily due to the energy 
and power sectors being deemed critical infrastructures under 
the EU AI Act. As the Act is now ratified, these technologies 
are facing more stringent development processes, including 
impact assessments, conformity assessments, adherence 
to EU AI Act requirements, registration in a dedicated EU 
database, and obtaining CE marking. Upon evaluation using 
the EU AI Act classification and assessment criteria, we 
determine the Risk Score to be at level 2.

II.1. Adoption Readiness (AIARL): 7 / 9

The Adoption Readiness Level (AIARL) has calculated using 
the complete CARAT tool (89), yields a score of 7, indicating a 
high level of readiness for adoption. 

The calculation details can be provided upon request.
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Detailed Scoring
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Table 4 -AI for Impact Score preliminary calculation. AI-powered HVAC.
Source: Schneider ElectricTM Sustainability Research.

If Ratio < 0.5: The negative impacts outweigh the positive impacts. 1

If Ratio between 0.5 and 1.5: Uncertainty zone where the positive and negative impacts are balanced. 2

If Ratio between 1.5 and 5: The positive impacts have a greater magnitude than the negative impacts. 3

If Ratio > 5: Highly beneficial environmental impact. 4

Goal-oriented research: From principles to practical use 1

Proof of Principle development: Active R&D initiated 2

System development: Sound software engineering 3

Proof of Concept development: Demonstration in real scenario 4

Machine learning capability: R&D to product transition 5

Application development: Robustification of ML modules towards use-cases 6

Integrations: ML infrastructure, product platform, data pipelines, security protocols 7

Mission-ready: End of system development 8

Deployment: Monitoring the current and improving the next 9

Value Proposition Assessment

Market Acceptance Assessment

Resource Maturity Assessment

License to Operate  Assessment

Minimal risk 1

Limited risk 2

High risk 3

Unacceptable risk 4

TTSS  <<  00..33::  LLiimmiitteedd  IImmppaacctt - Applications scoring below this threshold warrant careful consideration or even 
exclusion due to potential negative impact on climate goals.

00..33  ≤  TTSS  <<  00..66::  CCoonntteexxttuuaall  IImmppaacctt  - Applications within this range may offer climate benefits, but their use 
should be evaluated based on specific contexts to maximize positive environmental impact.

TTSS  ≥  00..66::  PPootteennttiiaall  HHiigghh  IImmppaacctt  - Applications surpassing this threshold demonstrate substantial potential for 
mitigating climate change and merit prioritization for further, in-depth analysis on an individual basis.

From 0 to 1 0,54

From 0 to 1 0,62

From 0 to 1 0,4

2

0,54

AITRL

AIARL

RS

TS

What-if sensitivity scenarios

Scenario #1 : Balanced ; Impact weight = ω1 = Scalability weight ω2 = Risk weight ω3 = 1/3

Scenario #2 : Climate Impact ; Impact weight = ω1 0,6 ; Scalability weight ω2 = 0,3 ; Risk weight ω3 = 0,1

Scenario #3 : Risk Avoidance ; Impact weight = ω1 = 0,1 ; Scalability weight ω2 = 0,1 ; Risk weight ω3 = 0,8

From 0 to 1Total Score General Formula

IS
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From 1 to 9
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Risk EU AI Act 4 Risk levels

CCrriitteerriiaa

Impact
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2

7

8
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6 Conclusions and 
Perspectives



Chapter VI - Conclusions and Perspectives
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Insights for future research

Discussions surrounding AI often focus on the latest 
technological advancements, which is undoubtedly exciting. 
However, it’s crucial to recognize that numerous AI 
technologies are already available and capable of generating 
immediate impacts. 

While the ranking of use cases may be subject to change, the 
ultimate goal is to trigger a wave of meta-analyses based 
on the most recent quantification methods. This will provide 
concrete evidence of where AI can truly make a difference. 
 
Given the significant environmental impact of the latest 
models, particularly generative AI, we advocate for a focus 
on scalable technologies with proven impact. This approach 
can help avoid investments in gadgets and unsustainable 
solutions. The emphasis should be on practical applications 
that can drive significant change, and for which the ratio 
between the positive and the negative impacts is maximized. 
 
In this regard, employing a frugal approach introduces a new 
dimension of efficiency by aligning AI efforts with anticipated 
positive outcomes, ultimately maximizing the return on 
investment.

Hence, our current areas of research focus on deeply 
analyzing the impact of the most promising use cases. 

In the future, by enhancing and expanding the AI for Impact 
Compass, we strive to provide guidance that is universally 
accessible to diverse audiences, including academics, 
industry professionals, and policymakers, ensuring 
widespread impact and understanding.

Future research, insights for policymakers

Insights for policymakers

I. Regulate AI’s Emissions Impact

• Emerging Technologies: Encourage transparent 
AI emissions impact Reporting for new AI-driven 
technologies (e.g., self-driving cars) to promote climate-
friendly applications.

• Economic Incentives: Establish economic incentives (e.g., 
carbon taxes) that encourage greenhouse gas (GHG) 
emission reduction.

• Transparency & Reporting: Where applicable, 
encourage (and possibly require) transparent reporting 
of AI’s lifecycle environmental impacts, including GHG 
emissions and energy consumption.

II. Boost AI solutions with Impact at Scale

• Research & Development: Encourage joint research in 
computer science, energy transition, and climate-related 
fields.

• Technical Readiness: Facilitate research, development, 
and demonstration (RD&D) programs that advance AI 
applications for managing climate change.

• Deployment Support: Reduce regulatory barriers to 
deploying AI technologies within the electricity sector that 
support climate goals.

III. Fostering AI & Data Sharing in the Public Sector

• Public Sector AI Capacity: Develop in-house AI 
implementation capabilities within relevant government 
agencies, particularly in strategic domains such as 
defense and counter-terrorism.

• Stakeholder Feedback: Establish processes to 
incorporate stakeholder feedback throughout the AI 
development and deployment cycle.

• Standardization: Develop standards and best practices to 
guide decisions on when and how to employ AI, including 
criteria for selecting AI over simpler solutions. This should 
encompass considerations such as which AI techniques 
to use, the frequency of their application, the volume of 
data required for training, and other relevant factors.

• Data Sharing Standards: Create standards for data 
collection, management, and sharing that address 

Conclusion on the research objectives

This research establishes a comprehensive method for 
quantifying the climate impact of AI applications, accounting 
for direct, indirect, and systemic effects.

Scalability is integrated as a crucial factor, ensuring that 
proposed solutions can be efficiently and effectively deployed 
across diverse contexts.

The study evaluates regulatory risk associated with AI 
solutions, safeguarding against social scoring, manipulative 
techniques, and compromising critical infrastructure safety.

By emphasizing demand-side climate change mitigation and 
decarbonization potential, the research acknowledges the 
significant contribution of energy consumption to global GHG 
emissions.

A methodology is developed to distinguish promising AI 
applications from less promising ones, providing stakeholders 
with initial guidance in differentiating between potential 
solutions.
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• Energy Transition: The global shift towards renewable energy sources and sustainable energy systems.
• General-Purpose Technology (GPT)
• Greenhouse Gas (GHG)
• Information and Communication Technology (ICT)
• Invention of a Method of Invention (IMI)
• Internet of Things (IoT): A network of internet-connected devices.
• Industrial Internet of Things (IIoT): IoT applied to industrial settings.
• Machine Learning (ML): A subset of AI focused on algorithms that learn from data.
• Natural Language Processing (NLP): AI focused on understanding and generating human language.
• Renewable Energy: Energy from sources that are naturally replenished.
• Smart Grid: An electricity network using digital communications technology to monitor and manage electricity flow.

Organizations and Initiatives
• Dartmouth Summer Research Project on Artificial Intelligence (DSRPAI)
• Distribution System Operators (DSO)
• Global Enabling Sustainability Initiative (GeSI)
• Global System for Mobile Communications Association (GSMA)
• International Energy Agency (IEA)
• Intergovernmental Panel on Climate Change (IPCC)
• International Organization for Standardization (ISO)
• Joint Research Centre (JRC)
• Organisation for Economic Co-operation and Development (OECD)
• Transmission System Operators (TSO)
• World Resources Institute (WRI)

Technologies
• 3D Printing (3D)
• Augmented Reality/Virtual Reality (AR/VR)
• Building Management System (BMS)
• Electronic and Electrical Equipment (EEE)
• Information Technologies (IT)
• Integrated Circuit (IC)
• Local Area Network (LAN)
• Life Cycle Analysis (LCA)
• Robotics (RB): Using robots in the energy sector.

Acronyms
• GWP: Global Warming Potential
• HVAC: Heating, Ventilation, and Air Conditioning

Digitization, Digitalization, and Digital Transformation
• Digitization (related to Direct effects): Converting analog data to digital format.
• Digitalization (related to Indirect effects): Utilizing digital technologies (ICT) across all players in the energy sector to exploit new data sources.
• Digital Transformation (related to Systemic effects): A large-scale, cross-sectoral shift where all economic and social actors connect into an 

interlinked digital system. This fosters enhanced data exchange, analysis, and decision-making capabilities.

Terminology

Life Is On | Schneider Electric 38www.se.com



Annex

1. McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelli-
gence, August 31, 1955. AI Magazine, 27(4), 12. https://doi.org/10.1609/aimag.v27i4.1904

2. Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433-460. https://doi.org/10.1093/mind/LIX.236.433

3. Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communi-
cations of the ACM, 9(1), 36-45. https://doi.org/10.1145/365153.365168

4. Mokyr, J. (1999). The Second Industrial Revolution, 1870–1914. In V. Castronovo (Ed.), Storia dell’ Economia Mondiale (Vol. 3, pp. 219-245). 
Rome, Italy: Laterza.

5. Kelly, M., & O’Grada, C. (2020). Connecting the Scientific and Industrial Revolutions: The Role of Practical Mathematics (No. 20/17). UCD 
Centre for Economic Research Working Paper.

6. IBM. (n.d.). Early games. Retrieved from https://www.ibm.com/history/early-games

7. Breazeal, C., & Scassellati, B. (1999). A context dependent attention system for a humanoid robot.

8. IEA. (2023, January 27). Why AI and energy are the new power couple. Retrieved from https://www.iea.org/commentaries/why-ai-and-energy-
are-the-new-power-couple

9. Crafts, N. (2021). Artificial intelligence as a general-purpose technology: An historical perspective. Oxford Review of Economic Policy, 37(3), 
521-536. https://doi.org/10.1093/oxrep/graa020

10. Cockburn, I., Henderson, R., & Stern, S. (2019). The Impact of Artificial Intelligence on Innovation: An Exploratory Analysis. In The Economics 
of Artificial Intelligence: An Agenda (pp. 69-94). University of Chicago Press. https://doi.org/10.7208/chicago/9780226613475.003.0004

11. Allen, R. C. (2007). Pessimism preserved: Real wages in the British Industrial Revolution (No. 314). Oxford University Department of Econom-
ics Working Paper.

12. Gordon, R. J. (2016). The rise and fall of American growth: The U.S. standard of living since the Civil War. Princeton, NJ: Princeton University 
Press.

13. Schwab, K. (2017). The fourth industrial revolution. New York, NY: Crown Business.

14. Branstetter, L. G., Drev, M., & Kwon, N. (2019). Get with the program: Software-driven innovation in traditional manufacturing. Management 
Science, 65(2), 541-558. https://doi.org/10.1287/mnsc.2017.2944

15. Masanet, E., et al. (2024). Will AI accelerate or delay the race to net-zero emissions? Nature, 628, 718-720. https://doi.org/10.1038/d41586-
024-01137-x

16. IPCC. (2018). Summary for Policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C 
above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat 
of climate change, sustainable development, and efforts to eradicate poverty (pp. 3-24). Cambridge, UK and New York, NY, USA: Cambridge 
University Press. https://doi.org/10.1017/9781009157940.001

17. Klein, R. J. T., et al. (2007). Inter-relationships between adaptation and mitigation. In Climate Change 2007: Impacts, Adaptation and Vul-
nerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 745-777). 
Cambridge, UK: Cambridge University Press.

18. IEA. (2022). World Energy Outlook 2022 – Analysis. Retrieved from https://www.iea.org/reports/world-energy-outlook-2022

19. Heymann, F., et al. (2023). Digitalization in decarbonizing electricity systems – phenomena, regional aspects, stakeholders, use cases, chal-
lenges and policy options. Energy, 262, 125521. https://doi.org/10.1016/j.energy.2022.125521

20. Di Silvestre, M. L., et al. (2018). How decarbonization, digitalization and decentralization are changing key power infrastructures. Renewable 
and Sustainable Energy Reviews, 93, 483-498. https://doi.org/10.1016/j.rser.2018.05.068

21. Heymann, F., et al. (2024). Reviewing 40 years of artificial intelligence applied to power systems – A taxonomic perspective. Energy and AI, 15, 
100322. https://doi.org/10.1016/j.egyai.2023.100322

22. IRENA. (2019). Artificial Intelligence and Big Data. Retrieved from <https://www.irena.org/publications/2019/Sep/Artificial-Intelli-
gence-and-Big-Data>

23. Times, M. (2024, February). Meta’s AI Chief Yann LeCun on AGI, Open-Source, and AI Risk.

24. Heymann, F., et al. (2023). Digitalization in decarbonizing electricity systems – Phenomena, regional aspects, stakeholders, use cases, chal-
lenges and policy options. Energy, 262, Part B, 125521. https://doi.org/10.1016/j.energy.2022.125521

Bibliography (1/4)

Life Is On | Schneider Electric 39www.se.com



Annex

25. IEA. (2017). Digitalization & Energy. Paris, France: OECD/IEA. https://doi.org/10.1787/9789264286276-en

26. Swiatowiec-Szczepanska, J., & Stepien, B. (2022). Drivers of digitalization in the energy sector—the managerial perspective from the catching 
up economy. Energies, 15(4), 1-25. https://doi.org/10.3390/en15041437

27. Schallmo, D. R. A., & Williams, C. A. (2017). History of digital transformation. International Journal of Innovation Management, 21(1), 1-17. 
<https://doi.org/10.1007/978-3-319-72844-5_2>

28. IRENA. (2019). Innovation landscape for a renewable-powered future: Solutions to integrate variable renewables. Abu Dhabi: United Arab 
Emirates.

29. Messner, D., Schlacke, S., Fromhold-Eisebith, M., Grote, U., Matthies, E., Pittel, K., Schellnhuber, U., H. J., Schieferdecker, I., Schneidewind, 
K., Augenstein, R., BlakeRath, K., Bohnenberger, A., Bossy, M. J., Dorsch, M., Feist, J., Gärtner, M., Göpel, ¨ U, Jürschik, K., Krause, C., Loose, 
M., Messerschmidt, R., Müngersdorff, I., Paulini, N., Petrusjanz, J., Pfeiffer, B., Pilardeaux, T., Schlüter, G., Schoneberg, ¨ A, Schulz, B., Stephan, 
P., Szabo-Müller, H., Wallis, N., Wegener, G. A. C., on G. C. (WBGU). (2019). Towards our digital future. Flagship report. German Advisory Council 
on Global Change (WBGU).

30. Lyu, W., & Liu, J. (2021). Artificial Intelligence and emerging digital technologies in the energy sector. Applied Energy, 303, 117615. <https://
doi.org/10.1016/j.apenergy.2021.117615>

31. JRC. (2021). AI Watch. Defining Artificial Intelligence 2.0. <https://ai-watch.ec.europa.eu/publications/ai-watch-defining-artificial-intelli-
gence-20_en>

32. Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California 
Management Review, 61(4), 5-30. <https://doi.org/10.1177/0008125619864925>

33. Fromhold-Eisebith, M., et al. (2019). Towards our common digital future: Summary. German Advisory Council on Global Change, Berlin.

34. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

35. Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245-258. 
<https://doi.org/10.1016/j.neuron.2017.06.011>

36. Salehin, I. M., Islam, M. S., Saha, P., Noman, S. M., Tuni, A., Hasan, M. M., Baten, M. A., (2024). AutoML: A systematic review on au-
tomated machine learning with neural architecture search. Journal of Information and Intelligence, 2(1), 52-81. <https://doi.org/10.1016/j.
jiixd.2023.10.002>

(37) Gibney, E. (2022). How to shrink AI’s ballooning carbon footprint. Nature, 607, 648. <https://doi.org/10.1038/d41586-022-01983-7>

(38) Vogel, L., et al. (2019). dena-Report. Artificial intelligence for the integrated energy transition. <https://publica.fraunhofer.de/handle/publi-
ca/300641>

39. Ahmad, T., et al. (2021). Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner 
Production, 289, 125834. <https://doi.org/10.1016/j.jclepro.2021.125834>

40. Zhang, Z. Z., Hope, G. S., & Malik, O. P. (1989). Expert systems in electric power systems-a bibliographical survey. IEEE Transactions on 
Power Systems, 4(4), 1355-1362. <https://doi.org/10.1109/59.41685>

41. Madan, S., & Bollinger, K. E. (1997). Applications of artificial intelligence in power systems. Electric Power Systems Research, 41(2), 117-131. 
<https://doi.org/10.1016/S0378-7796(96)01188-1>

42. Kaack, L. H., et al. (2022). Nature Climate Change, 12, 518-527.

43. Quest, H., Cauz, M., Heymann, F., Rod, C., Perret, L., Ballif, C., Virtuani, A., & Wyrsch, N. (2022). A 3D indicator for guiding AI applications in 
the energy sector. Energy and AI, 9, 100167. <https://doi.org/10.1016/j.egyai.2022.100167>

44. OECD. (2022). OECD framework for the classification of AI systems (323). <http://dx.doi.org/10.1787/cb6d9eca-en>; <https://www.oecd-ili-
brary.org/content/paper/cb6d9eca-en>

45. Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., et al. (2018). Notes from the AI frontier - insights from hundreds of use cas-
es. McKinsey Global Institute. <https://www.mckinsey.com/~/media/McKinsey/Featured%20Insights/Artificial%20Intelligence/Notes%20from%20
the%20AI%20frontier%20Applications%20and%20value%20of%20deep%20learning/Notes-from-the-AI-frontier-Insights-from-hundreds-of-use-
cases-Discussion-paper.ashx>

46. Lee, D.-s., Chen, Y.-T., & Chao, S.-L. (2022). Universal workflow of artificial intelligence for energy saving. Energy Reports, 8, 1602-1633. 
<http://dx.doi.org/10.1016/j.egyr.2021.12.066>; <https://www.sciencedirect.com/science/article/pii/S2352484721015055>

47. Lee, D., Huang, H.-Y., Lee, W.-S., & Liu, Y. (2020). Artificial intelligence implementation framework development for building energy sav-
ing. International Journal of Energy Research, 44(14), 11908-11929. <http://dx.doi.org/10.1002/er.5839>; <https://onlinelibrary.wiley.com/doi/
pdf/10.1002/er.5839>

Bibliography (2/4)

Life Is On | Schneider Electric 40www.se.com



Annex

48. Bahrammirzaee, A. (2010). A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and 
hybrid intelligent systems. Neural Computing and Applications, 19(8), 1165-1195. <http://dx.doi.org/10.1007/s00521-010-0362-z>; <https://doi.
org/10.1007/s00521-010-0362-z>

49. Nsoesie, E. O. (2018). Evaluating artificial intelligence applications in clinical settings. JAMA Network Open, 1(5), e182658. <http://dx.doi.
org/10.1001/jamanetworkopen.2018.2658>

50. Paccou, R. (2024). Digital with impact: Towards a systemic approach to digitalization for a sustainable energy transition. Schneider Electric 
Sustainability Research Institute. <https://www.se.com/ww/en/insights/sustainability/sustainability-research-institute/digital-with-impact.jsp>

51. Lavin, A., Gilligan-Lee, C. M., Visnjic, A., et al. (2022). Technology readiness levels for machine learning systems. Nature Communications, 13, 
6039. <https://doi.org/10.1038/s41467-022-33128-9>

52. ITU-T. (2022). Recommendation ITU-T L.1480 (12/2022). <https://www.itu.int/rec/T-REC-L.1480-202212-I>

54. European Green Digital Coalition (EGDC). (n.d.). Net-Carbon Impact Assessment Methodology. <https://www.greendigitalcoalition.eu/net-car-
bon-impact-assessment-methodology-for-ict-solutions/>

55. Carbone 4. (n.d.). Principles and guidelines NZI for IT. <https://www.carbone4.com/en/principles-guidelines-nzi-it>

56. Lavin, A., Gilligan-Lee, C. M., Visnjic, A., et al. (2022). Technology readiness levels for machine learning systems. Nature Communications, 13, 
6039. <https://doi.org/10.1038/s41467-022-33128-9>

57. McKinsey. (2018). The digital utility: new challenges, capabilities, and opportunities. <https://www.readkong.com/page/the-digitalutili-
ty-new-challenges-capabilities-and-6511893>

58. Hellwig, J. (Creator), Huggett, S. (Creator), Siebert, M. (Creator). (2019, September 15). Data for report “Artificial Intelligence: How knowledge 
is created, transferred, and used” [Data set]. Mendeley Data. https://doi.org/10.17632/7ydfs62gd6.2

59. Cheng, L., & Yu, T. (2019). A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and 
electric power systems. International Journal of Energy Research, 43(6), 1928-1973. <https://doi.org/10.1002/er.4333>

60. JRC and OECD. (2021). AI watch, national strategies on artificial intelligence: a European perspective. Publications Office of the European 
Union. <https://data.europa.eu/doi/10.2760/069178>

61. Directorate-General for Research, Innovation (European Commission), Renda, A., Schwaag Serger, S., Tataj, D., Morlet, A., et al. (2021). 
Industry 5.0, a transformative vision for Europe: governing systemic transformations towards a sustainable industry. Publications Office of the Euro-
pean Union. <https://data.europa.eu/doi/10.2777/17322>

62. Maddikunta, P. K. R., Pham, Q.-V., Prabadevi, B., Deepa, N., Dev, K., Gadekallu, T. R., et al. (2021). Industry 5.0: A survey on enabling tech-
nologies and potential applications. Journal of Industrial Information Integration, 100257. <https://doi.org/10.1016/j.jii.2021.100257>

63. Nahavandi, S. (2019). Industry 5.0—A human-centric solution. Sustainability, 11(16), 4371. <https://doi.org/10.3390/su11164371>

64. Fraga-Lamas, P., Lopes, S. I., & Fernández-Caramés, T. M. (2021). Green IoT and edge AI as key technological enablers for a sustainable 
digital transition towards a smart circular economy: An industry 5.0 use case. Sensors, 21(17), 5745. <https://doi.org/10.3390/s21175745>

65. EU Artificial Intelligence Act, High-level summary of the AI Act, 27 Feb, 2024, <https://artificialintelligenceact.eu/high-level-summary/>

66. European Commission’s AI risk framework, <https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai>

67. EPRI. (2018). Developing a Framework for Integrated Energy Network Planning (IENP).

68. EPRI. (2019, Feb 25). Case Studies of 10 Integrated Energy Network Planning Challenges – Volume 1: Phase 2 – Framework for Integrated 
Energy Network Planning (IEN-P). <https://www.epri.com/research/products/000000003002014644>

69. IRENA. (2019, Sep). Artificial Intelligence and Big Data. ISBN: 978-92-9260-143-0. <https://www.irena.org/publications/2019/Sep/Artificial-In-
telligence-and-Big-Data>

70. Vogel, L., Richard, P., Brey, M., Mamel, S., Schätz, K., Klobasa, M., Pelka, S., & Plötz, P. (2019). dena-Report. Artificial intelligence for the 
integrated energy transition. <https://publica.fraunhofer.de/entities/publication/19d920d7-b9e1-42cb-9f2f-28e21a5f1d31/details>

71. WEF. (2021). Harnessing artificial intelligence to accelerate the energy transition. White paper, World Economic Forum. <https://www.weforum.
org/whitepapers/harnessing-artificial-intelligenceto-accelerate-the-energy-transition/>.

72. Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Slavin Ross, A., Milojevic-Dupont, N., Jaques, N., Wald-
man-Brown, A., Luccioni, A. S., Maharaj, T., Sherwin, E. D., Mukkavilli, S. K., Kording, K. P., Gomes, C. P., Ng, A. Y., Hassabis, D., Platt, J. C., 
Creutzig, F., Chayes, J., & Bengio, Y. (2023). Tackling Climate Change with Machine Learning. ACM Computing Surveys, 55(2), Article 42. 
<https://doi.org/10.1145/3485128>

Bibliography (3/4)

Life Is On | Schneider Electric 41www.se.com



Annex

73. Afroz, Z., Shafiullah, G. M., Urmee, T., & Higgins, G. (2018). Modeling techniques used in building HVAC control systems: A review. Renewable 
and Sustainable Energy Reviews, 83, 64-84.

74. Fu, G. (2018). Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system. Energy, 148, 269-282.

75. Kazmi, H., Mehmood, F., Lodeweyckx, S., & Driesen, J. (2018). Gigawatt-hour scale savings on a budget of zero: Deep reinforcement learning 
based optimal control of hot water systems. Energy, 144, 159-168.

76. Costa, A., Keane, M. M., Torrens, J. I., & Corry, E. (2013). Building operation and energy performance: monitoring, analysis and optimisation 
toolkit. Applied Energy, 101, 310-316. <https://doi.org/10.1016/j.apenergy.2011.10.037>

77. Wang, S., & Ma, Z. (2008). Supervisory and optimal control of building HVAC systems: a review. HVAC&R Research, 14(1), 3-32. <https://doi.
org/10.1080/10789669.2008.10390991>

78. International Energy Agency. (n.d.). News and Commentaries.

79. Zhou, S. L., Shah, A. A., Leung, P. K., Zhu, X., & Liao, Q. (n.d.). A comprehensive review of the applications of machine learning for HVAC.

80. Zhou, X., Liu, Y., Luo, M., Zhang, L., Zhang, Q., & Zhang, X. (2019). Thermal comfort under radiant asymmetries of floor cooling system in 2 H 
and 8 H exposure durations. Energy and Buildings, 188, 98-110. <https://doi.org/10.1016/j.enbuild.2019.02.009>

81. Arens, E., Ghahramani, A., Przybyla, R., Andersen, M., Min, S., Peffer, T., Raftery, P., Zhu, M., Luu, V., & Zhang, H. (2020). Measuring 3D 
indoor air velocity via an inexpensive low-power ultrasonic anemometer. Energy and Buildings, 211, 109805. <https://doi.org/10.1016/j.en-
build.2020.109805>

82. Zhu, Y., Luo, M., Ouyang, Q., Huang, L., & Cao, B. (2015). Dynamic characteristics and comfort assessment of airflows in indoor environ-
ments: a review. Building and Environment, 91, 5-14. <https://doi.org/10.1016/j.buildenv.2015.03.032>

83. Luo, M., Wang, Z., Kevin, K., Cao, B., Zhai, Y., & Zhou, X. (2018). Human metabolic rate and thermal comfort in buildings: the problem and 
challenge. Building and Environment, 131, 44-52. <https://doi.org/10.1016/j.buildenv.2018.01.005>

84. Lee, K., Choi, H., Kim, H., Kim, D. D., & Kim, T. (2020). Assessment of a real-time prediction method for high clothing thermal insulation using a 
thermoregulation model and an infrared camera. Atmosphere, 11(1), 106. <https://doi.org/10.3390/atmos11010106>

85. Wang, Z., Yu, H., Luo, M., Wang, Z., Zhang, H., & Yu, J. (2019). Predicting older people’s thermal sensation in building environment through 
a machine learning approach: modelling, interpretation, and application. Building and Environment, 161, 106231. <https://doi.org/10.1016/j.
buildenv.2019.106231>

86. SISAB. (n.d.). In English. Retrieved from <https://sisab.se/sv/in-english/>

87. Schneider Electric. (2023). White Paper - Using Myrspoven AI to Optimize HVAC. Retrieved from <https://myrspoven.com/wp-content/up-
loads/2023/06/White-Paper-Schneider-%E2%80%93-Using-Myrspoven-AI-to-Optimize-HVAC-2.pdf>

88. EC. (2021). Proposal for a regulation of the European Parliament and of the Council laying down harmonised rules on Artificial Intelli-
gence (Artificial Intelligence Act) and amending certain union legislative acts. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TX-
T/?qid=1623335154975&uri=CELEX%3A52021PC0206.

89. CARAT (Commercial Adoption Readiness Assessment Tool). (2023, March). Authors: Lucia Tian, Jacob Mees, Vanessa Chan (Office of Tech-
nology Transitions), and William Dean (Office of Clean Energy Demonstrations). Retrieved from https://www.energy.gov/sites/default/files/2023-03/
Commercial%20Adoption%20Readiness%20Assessment%20Tool%20%28CARAT%29_030323.pdf.

Bibliography (4/4)

Life Is On | Schneider Electric 42www.se.com



Annex

The AI Act aims to provide AI developers and deployers with clear 
requirements and obligations regarding specific uses of AI. At the 
same time, the regulation seeks to reduce administrative and financial 
burdens for business, in particular small and medium-sized enterprises 
(SMEs).

The AI Act is part of a wider package of policy measures to support the 
development of trustworthy AI, which also includes the AI Innovation 
Package and the Coordinated Plan on AI. Together, these measures will 
guarantee the safety and fundamental rights of people and businesses 
when it comes to AI. They will also strengthen uptake, investment and 
innovation in AI across the EU.

The AI Act is the first-ever comprehensive legal framework on AI world-
wide. The aim of the new rules is to foster trustworthy AI in Europe and 
beyond, by ensuring that AI systems respect fundamental rights, safety, 
and ethical principles and by addressing risks of very powerful and 
impactful AI models.

The AI Act ensures that Europeans can trust what AI has to 
offer. While most AI systems pose limited to no risk and can 
contribute to solving many societal challenges, certain AI 
systems create risks that we must address to avoid undesirable 
outcomes.

For example, it is often not possible to find out why an AI system 
has made a decision or prediction and taken a particular action. 
So, it may become difficult to assess whether someone has 
been unfairly disadvantaged, such as in a hiring decision or in 
an application for a public benefit scheme.

Although existing legislation provides some protection, it is 
insufficient to address the specific challenges AI systems may 
bring.

The proposed rules will:

• address risks specifically created by AI applications;
• prohibit AI practices that pose unacceptable risks;
• determine a list of high-risk applications;
• set clear requirements for AI systems for high-risk applica-

tions;
• define specific obligations deployers and providers of high-

risk AI applications;
• require a conformity assessment before a given AI system 

is put into service or placed on the market;
• put enforcement in place after a given AI system is placed 

into the market;
• establish a governance structure at European and national 

level. 

The Regulatory Framework defines 4 levels of risk for AI sys-
tems:

EU AI Act
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All AI systems considered a clear threat to the safety, livelihoods and 
rights of people will be banned, from social scoring by governments to 
toys using voice assistance that encourages dangerous behaviour.

High risk
AI systems identified as high-risk include AI technology used in:

• critical infrastructures (e.g. transport), that could put the life and 
health of citizens at risk;

• educational or vocational training, that may determine the access 
to education and professional course of someone’s life (e.g. scor-
ing of exams);

• safety components of products (e.g. AI application in robot-assist-
ed surgery);

• employment, management of workers and access to self-employ-
ment (e.g. CV-sorting software for recruitment procedures);

• essential private and public services (e.g. credit scoring denying 
citizens opportunity to obtain a loan);

• law enforcement that may interfere with people’s fundamental 
rights (e.g. evaluation of the reliability of evidence);

• migration, asylum and border control management (e.g. automat-
ed examination of visa applications);

• administration of justice and democratic processes (e.g. AI solu-
tions to search for court rulings).

High-risk AI systems will be subject to strict obligations before they can 
be put on the market:

• adequate risk assessment and mitigation systems;
• high quality of the datasets feeding the system to minimise risks 

and discriminatory outcomes;
• logging of activity to ensure traceability of results;
• detailed documentation providing all information necessary on the 

system and its purpose for authorities to assess its compliance;
• clear and adequate information to the deployer;
• appropriate human oversight measures to minimise risk;
• high level of robustness, security and accuracy.
• All remote biometric identification systems are considered high-risk 

and subject to strict requirements. The use of remote biometric 
identification in publicly accessible spaces for law enforcement 
purposes is, in principle, prohibited.

Narrow exceptions are strictly defined and regulated, such as when 
necessary to search for a missing child, to prevent a specific and 
imminent terrorist threat or to detect, locate, identify or prosecute a 
perpetrator or suspect of a serious criminal offence.

Those usages is subject to authorisation by a judicial or other indepen-
dent body and to appropriate limits in time, geographic reach and the 
data bases searched.

Limited risk
Limited risk refers to the risks associated with lack of transparency in 
AI usage. The AI Act introduces specific transparency obligations to 
ensure that humans are informed when necessary, fostering trust. For 
instance, when using AI systems such as chatbots, humans should be 
made aware that they are interacting with a machine so they can take 
an informed decision to continue or step back. Providers will also have 
to ensure that AI-generated content is identifiable. Besides, AI-gener-
ated text published with the purpose to inform the public on matters 
of public interest must be labelled as artificially generated. This also 
applies to audio and video content constituting deep fakes.

Minimal or no risk
The AI Act allows the free use of minimal-risk AI. This includes applica-
tions such as AI-enabled video games or spam filters. The vast majority 
of AI systems currently used in the EU fall into this category.
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The contents of this publication are presented for information pur-
poses only, and while effort has been made to ensure its accuracy, 
they are not to be construed as warranties or guarantees of any kind, 
express or implied. This publication should not be relied upon to make 
investment advice or other strategic decisions. 

The assumptions and models and conclusions presented in the publi-
cation represent one possible scenario and are inherently dependent 
on many factors outside the control of any one company, including but 
not limited to governmental actions, evolution of climate conditions, 
geopolitical consideration and shifts in technology.

Legal Disclaimer
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The scenarios and models are not intended to be projections of
forecasts of the future and do not represent Schneider Electric’s
strategy of business plan.

The Schneider Electric logo is a trade mark and service mark
of Schneider Electric SE.

Any other marks remain the property of their respective owners.
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